

• PROJET MINI-BEE – Partie Architecture & Structure

Qu'est-ce que le Mini-Bee?

- Un projet collaboratif entre Technoplane et plusieurs écoles et lycées
- Une ambulance aérienne VTOL (Vertical Take-Off and Landing),
 plus rapide et allant plus loin qu'un hélicoptère, permettant d'opérer sur des théâtres d'opération difficiles d'accès.
- Le MiniBee est conçu pour être transportable en soute d'un avion de ligne, lui procurant une capacité de déploiement décuplée.

Caractéristiques techniques							
Propulsion	2 Rotax 915iS + 4 Emrax 208 High Voltage						
Parties tournantes	10 rotors (diamètre: 3,20m) + 4 hélices pour le vol horizontal						
Entrainement des parties tournantes	moteurs électriques asynchrones						
MTOW (Maximum Take-Off Weight)	1250 Kg						
Vitesse	200 km/h						
Dimensions fuselage	Hauteur: 1,40m Longueur: 4m Largeur: 1,60m						
Systèmes anti-crash	parachute						

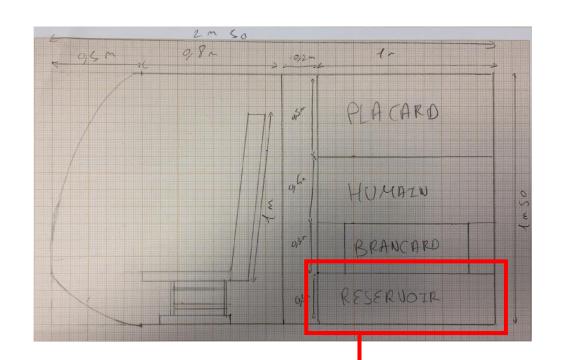
Le Mini-Bee : aspect structure

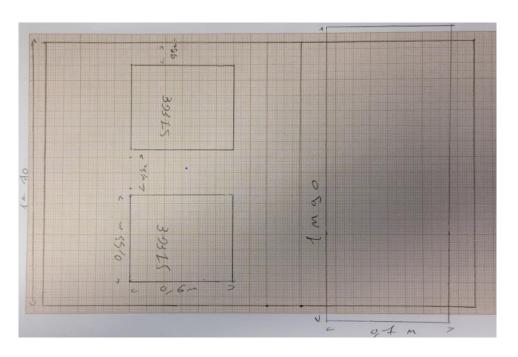
F1	Transporter une civière, un secouriste et un pilote	
	Résister au milieu ambiant et aux contraintes exercées sur la structure	F2
F3	Intégrer les moteurs	
	Être transportable par avion (en containers)	F4
F5	Permettre la fixation des ailes	
	Permettre une maintenance aisée par le personnel	F6
F7	Respecter les normes aériennes	
	Permettre l'atterrissage/décollage et le roulage au sol	F8
F9	Respecter l'environnement	

Organisation du projet et planning

			Octobre						Novemb	re				Décer	mbre					Janvier		
	07-oct	14-oct	Réunion 1	21-oct	28-oct	Réunion 2	04-nov	11-nov	18-nov	Réunion 3	25-nov	02-déc	09-déc	Réunion 4	16-déc	23-déc	30-déc	06-janv	Réunion 5	13-janv	20-janv	27-janv
Réunion de lancement																						
Partie aministrative																						
(confidentialité, user list,)																						
Contacter Central Lille																						
Etat de l'art																						
Cahier des charges																						
Etudes préliminaires																						
Développement maquette																						
bourget et aérodynamique																						
Etude système d'attache cockît-																						
compartiement moteur																						
Etude abaqus (fatigue et																						
résistance)																						
Etude fluent																						
Implantation moteur																						
Faire maquette structure																						
Implantation et dévelopement																						
des bras support de rotors																						
Fabrication maquette																						
impression 3D																						
Rapport du projet																						
Soutenance																						

Etudes préliminaires





Aménagement intérieur

F1

Transporter une civière, un secouriste et un pilote

Modification en cours de projet : Passage du réservoir dans le module générateur

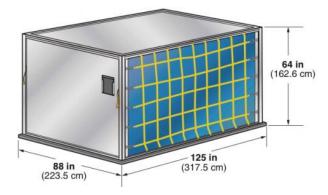
Etude des containers de transport

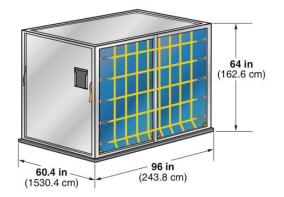
F4) Être transportable par avion

• Différents types de containers dans lesquels le Mini Bee peut être transporté:

LD-9

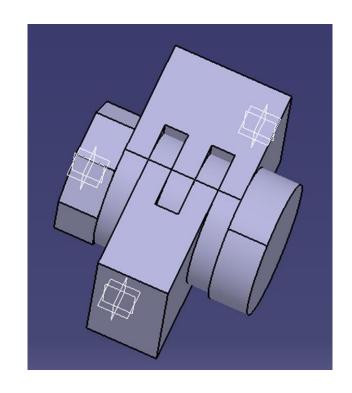
 $\times 2$


Cockpit


Ailes, pales, bras, ...

× 1

Compartiment moteur



Etude de la liaison entre modules

F4

Être transportable par avion

- Objectif:
 - Assemblage rapide du cockpit et compartiment moteur
 - Nécessite peu d'ouitillage pour l'assemblage
 - Pièces qui résistent à des efforts importants
 - Travail réalisé avec l'entreprise EPCI
- Différentes pièces du système:
 - Chape du cockpit
 - Chape du compartiment moteur
 - Goujon
 - Ecrou

Etude des trains d'atterrissage

F8

Permettre l'atterrissage/décollage et le roulage au sol

Patins

Très simple et très robuste

Ne roule pas

Trains fixes

Simple et robuste

Aérodynamisme

Trains escamotables

Aérodynamique

Complexe, lourd, volumineux

Trains antichocs (Tigre)

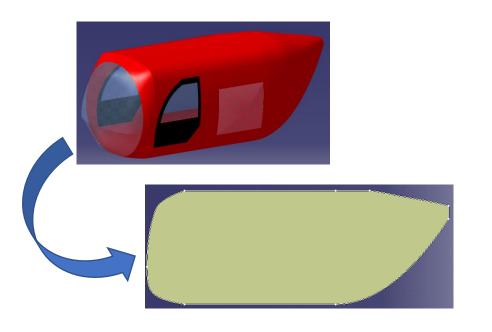
- → Trains fixes
- → Résistent à des atterrissages durs de 6m/s à 10m/s

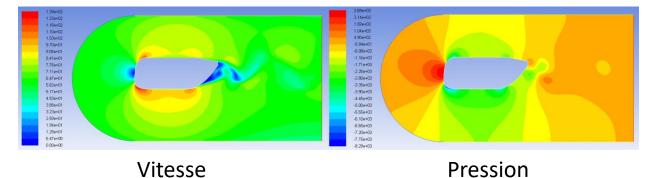
Objectif: Définir la forme globale du Mini-Bee

Outils & logiciels: Ansys Fluent

1) Evaluer la première géométrie

Optimiser la géométrie

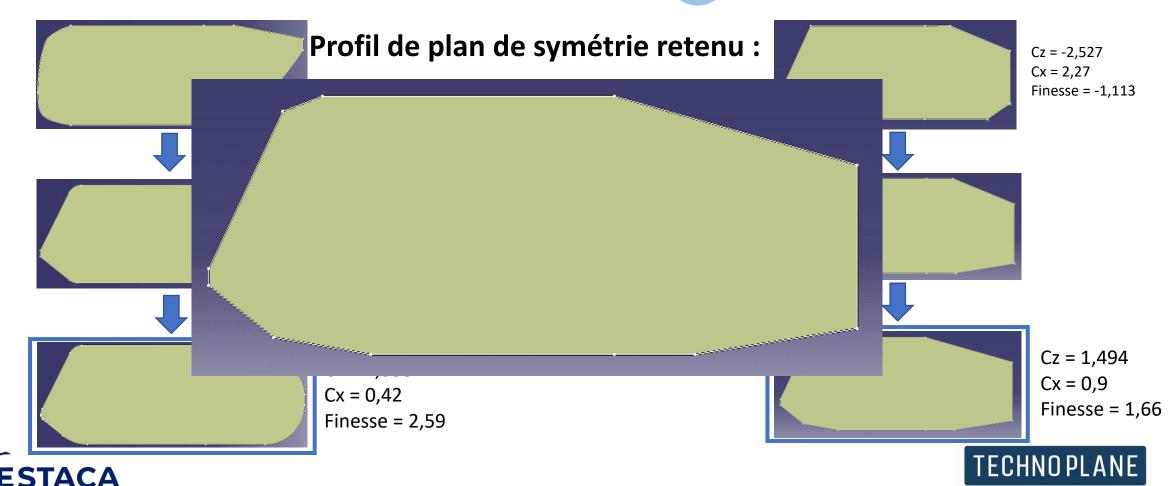

Trouver un compromis entre aérodynamisme et simplicité


3

1) Evaluer la première géométrie

Coefficient de portance	Coefficient de traînée	Finesse = Cz/Cx
-2,714	0,626	-4,335

→ Pas satisfaisant : profil très déportant !



2) Optimiser la géométrie

Trouver un compromis

AERONAUTICAL INNOVATION

Objectif: Dimensionner la structure du Mini Bee

Outils & logiciels : Abaqus

1) Définir les efforts subis par la structure

Choix du matériau ou des matériaux

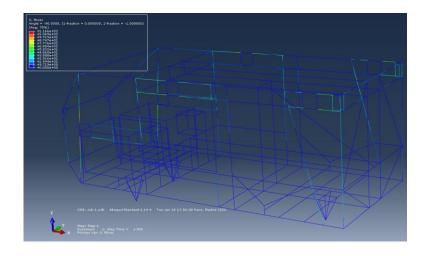
2

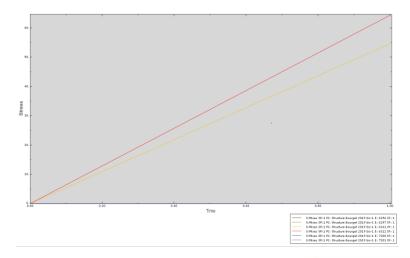
3 Conception d'une première structure en respectant le cahier des charges

Réalisation des tests d'efforts sous Abaqus afin de tester sa résistance aux efforts

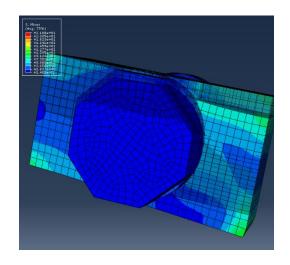
4

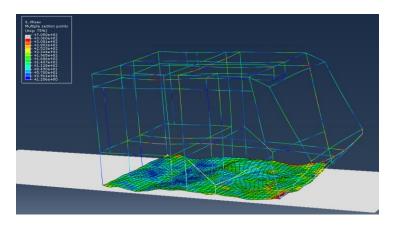
Optimisation de la structure afin de trouver le meilleur compromis entre poids et résistance


Différentes phases	S Type d'effort	Explication et calcul de la valeur appliquée	Valeur appliquée N	Valeur critique du matériaux avec coeff de sécurité de 1,5 (Mpa)	Type de dimensionnement	Dimensionnant?
	Pression au niveau des ailes (point d'accroc	F = Poids de l'aile (90 kg) * facteur de charge maximum (3,8)* g + pousssé rotor (entre 800N et 2200N) * 3 (bras de levier)= 5820 N à 10020 N	Entre 5820 N et 10020 N pour la poussé vers le haut	107	Fatigue (flexion)	Dimensionnant
Décollage	Attaches cockpit-compartiement moteur	Force de la poussée à l'arrière ou à l'avant = Poussé rotor (800 à 2200 N) * Nombre de rotor pour l'avant ou l'arrière (5 ou 6)= 4800 < F < 13200 /// Force du poids de la moitié du Mini Bee: F= M*g= 750*10 = 7500 N	7500N pour le poids et 13200 N pour la poussé	107	Fatigue (torsion, compression, traction, flexion)	Pas dimensionnant
	Points de fixations des rotors	F = poussé d'une hélice(800 n à 2200 N) * bras de levier de (1,5 m)	Entre 1200 N et 3300 N	107	Fatigue (traction et torsion)	Dimensionnant
	Dimensionnement au virage (aile et torsion de la structure, rigidité,)	n (facteur de charge): 3,8 g		107	Fatigue	
	Point d'accroche des ailes	F = Poids de l'aile (90 kg) * facteur de charge maximum (3,8)* g + pousssé rotor (entre 800N et 2200N) * 3 (bras de levier)= 5820 N à 10020 N	Entre 5820 N et 10020 N pour la poussé vers le haut	107	Fatigue (flexion)	Dimensionnant
	Vitesse du vent sur la structure	250 km/h		107	Statique (compression)	Pas dimensionnant car force faible
	Attaches cockpit-compartiement moteur	Force de la poussée à l'arrière ou à l'avant = Poussé rotor (800 à 2200 N) * Nombre de rotor pour l'avant ou l'arrière (5 ou 6)= 4800 < F < 13200 /// Force du poids de la moitié du Mini Bee: F= M*g= 750*10*3,8 = 28 500 N	28500 N pour le poids et 13200 N pour la poussé	107	Fatigue (torsion, compression, traction, flexion)	Dimensionnant
	Points de fixations des rotors	F = poussé d'une hélice(800 n à 2200 N) * bras de levier de (1,5 m)	Entre 1200 N et 3300 N	107	Fatigue (traction, compression et torsion)	Dimensionnant
Atterrissage	Train qui subit les atterrissage et effort sur la structure	Inutile		107	Fatigue (compression)	Pas dimensionnant par rapport au crash
Accidents	Crash au sol (Comportement de la structure (ne casse pas, fixations entre les deux compartiements ne cassent pas, dissipe l'énergie pour protéger les occupants (en particulier les barres au niveau des sièges)), les moteurs ne sont pas éjecter dans le mini-bee) -> certification CS 29.561 ou CS 27.561		Ec= 1 8000 000J - 2 700 000J	336	Dynamique (choc) / Compression)	Dimensionnant

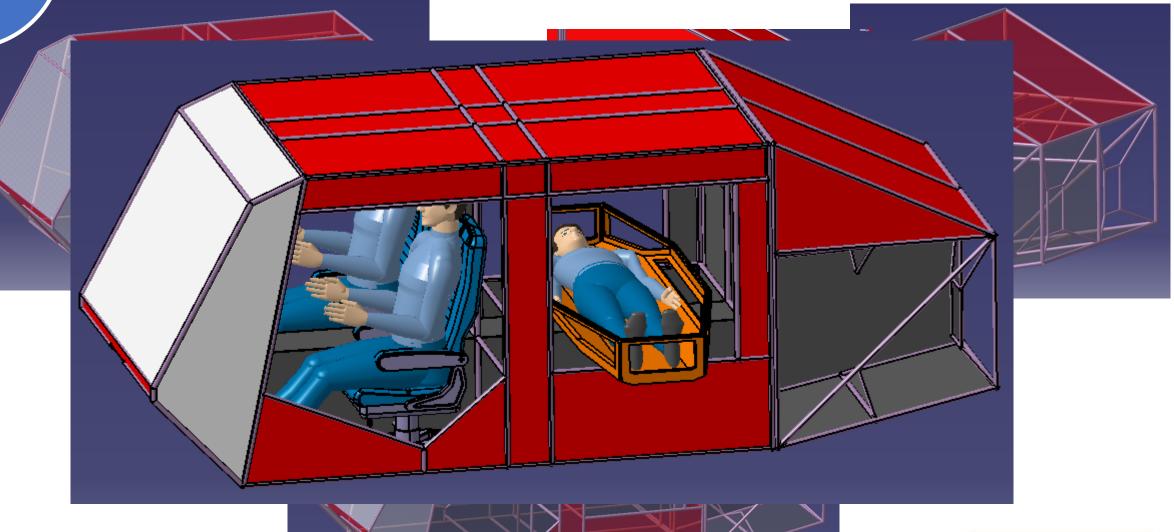


- Etude de la phase de décollage et vol avec:
 - 80 kg de poussée
- * Taille des tubes : diamètre 20 mm et épaisseur 2 mm
- * Poids de la structure : 95,5 Kg
- * Contrainte maximale: 76 MPa
 - 220 kg de poussée
- * Taille des tubes : diamètre 25 mm et épaisseur 2 mm
- * Poids de la structure : 120 kg
- * Contrainte maximale: 74 MPa

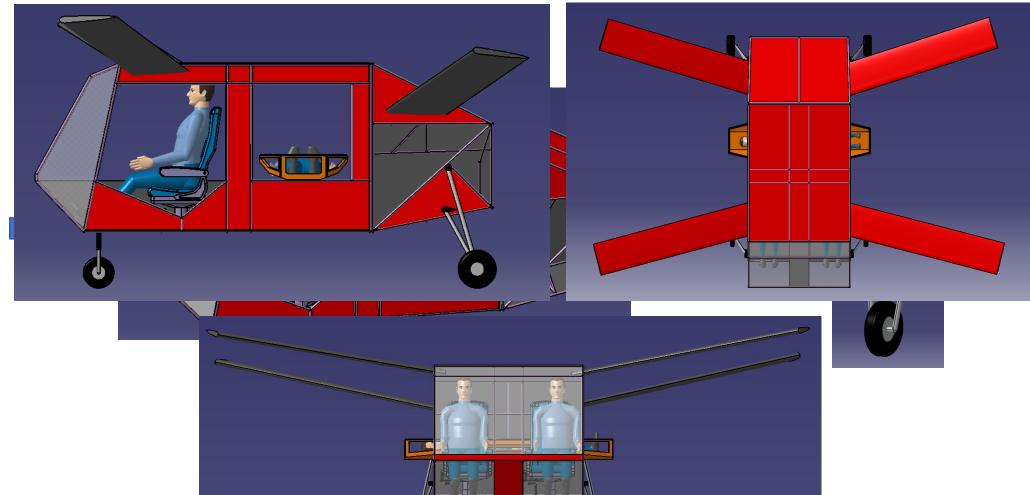




- Optimisation (poids/résistance) du système chape de liaison cockpit compartiment moteur suivant 2 axes:
- La taille du diamètre du goujon (influe sur le déplacement et le poids)
- L'épaisseur et la taille des chapes (influe sur la résistance et le poids)
- Crash:
- Première approche pour comprendre comment la structure réagit à un crash
- Optimisation du modèle Abaqus en réalisant les essais avec une maquette complète et en connaissant la répartition des masses


Livrables et résultats

Maquette numérique



Maquette numérique

Bilan des masses

Composant	Masse unitaire	Quantité	Masse totale	

Systèmes propulsifs							
Carburant	0,75g/L	195,94	184,95				
ROTAX 915is	84,6	2	169,2				
Cables	10	1	10				
Refroidissement	10	2	20				
EMRAX 228 High Voltage	12,3	4	49,2				
Ensemble rotor	7,7	12	92,4				
Contrôleurs	0,65	12	7,8				
Batterie moto	0,4	1	0,4				
		Sous-total	533,95				

Structure, pax et équipements							
Module avant (structure + verrière)	136		136				
Module générateur	38	1	38				
PAX	100	3	300				
Sièges	18	2	36				
Civière de sauvetage	13	1	13				
Ailes			100				
Bras rotors			60				
Trains d'atterrissage			30				
Plancher			8				
Portes	8	4	32				
		Sous-total	753				
	,						
		Total	1286,95				

Conclusion

- Une étude aérodynamique
- Une étude structurelle
- 2 maquette 3D
- De nombreuses études annexes
- De nombreuses études à approfondir

