

Suivi de projet

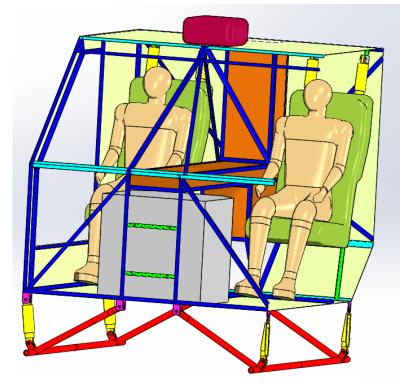
Intégration moteurs et énergie du Mini-Bee

Année 2021-2022

Laurine TOUTIN - Bastien BRON – Guillaume TIGÉ

Sommaire

- 1. Contexte
 - a. Objectifs
 - b. Liens avec les autres projets
 - c. Diagramme de Gantt
- 2. Cahier des charges
- 3. Etude des performances de différentes configurations de chaine de puissance
- 4. Etude de la structure propulsive
- 5. Scénarii de vol
- 6. Conclusion



Contexte Mini-Bee

- Piloté
- VTOL
- 2 PAX
- Moteur à piston Rotax 915is
- Démontable rapidement et facilement
- Tenir au sein de conteneurs LD3 (soute d'avion)
- Se déplacer rapidement
- Coûts modérés de l'appareil
- Facilement pilotable
- Projet fortement collaboratif

Cabine du Mini-Bee réalisée par l'ESTACA – ASA -2022

Objectifs du projet ISPEB

- Définir les besoins énergétiques et le cahier des charges du mini-bee
- Evaluer les performances des différentes configurations électriques
- Choisir entre une machine triphasée asynchrone et une machine hexaphasée synchrone
- Formaliser les plans de vol du mini-bee

Liens avec les autres projets

Contrôle de vol d'un multicoptère hybride et tests des moteurs asynchrones

Modélisation électrique de la chaîne de propulsion

Communiquer

les différentes

configurations

électriques

Communiquer
les différentes
configurations
de la répartition
des masses de la
chaine de

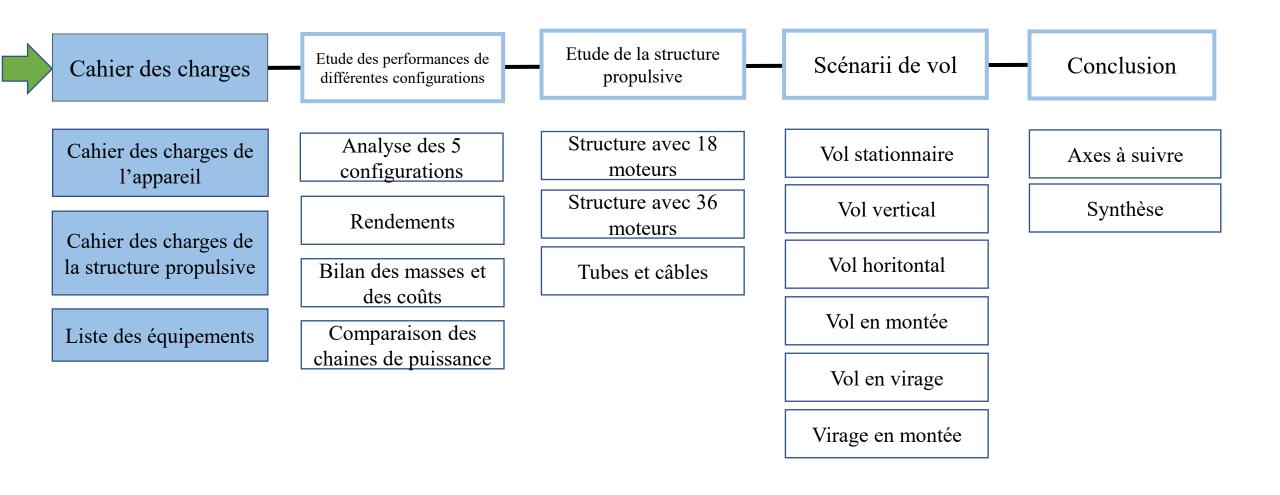
puissance

Dimensionnement structurel

Structure et aménagement du Mini-Bee

Structure de l'ensemble propulsif

Diagramme de Gantt


		18/10/2021	25/10/2021	01/11/2021	08/11/2021	15/11/2021 22/11/2	.021 29/11/2021	1 06/12/2021 13/12/202	21 20/12/2021 27/12/2	2021 03/01/2022	10/01/2022	17/01/2022 2	4/01/2022
	Cahier des charges de la structure avec les rotors (18 moteurs)												
Travail préparatoire	Cahier des charges de l'appareil et de la chaine de propulsion												
	Réaliser la liste du matériel pour moteur synchrone et continu												
Etude des performances	Réaliser et analyser 5 schémas de différentes configurations de chaine de puissance												
de différentes configurations de chaine de	Réaliser le bilan des masses et des coûts												
puissance du Mini-Bee	Comparer 5 chaines de puissance régime triphasé ou continu (puissances, rendements)												
Etude de la structure	Etude de la structure propulsive (18 moteurs) puis 36 moteurs												
propulsive du Mini-Bee	Cahier des charges de la structure avec les rotors (36 moteurs)												
Etude de la mécanique du vol du Mini-Bee	Modéliser stabilité en vol dynamique/ atterrissage / décollage (puissance, moteur synchrone ou asynchrone, rotors)												
Rapport et présentation du travail effectué	Rédaction du rapport												
travair circotae	Soutenance	<u> I </u>		11 1		1.		/1 1 / / 11					

En bleu les dates prévisionnelles et en violet les dates réelles Les écritures violettes correspondent aux tâches ajoutées durant le projet

Cahier des charges

Cahier des charges du Mini-Bee

500 km franchissables

2 PASSAGERS

36 HELICES

300 000 €

	Données du Mini-Bee	
Nombre de rotors	18 rotors	36 rotors
Nombre de passagers	2	2
Vitesse verticale en m/s	4	4
Diamètre de la surface prise par une pale en m	2.2	1.57
Coût total en euros	300 000	300 000
Altitude maximale en ft	14 000	14 000
Vitesse de croisière en km/h	170	170
Distance maximale franchissable en km	500	500

Cahier des charges de la structure propulsive

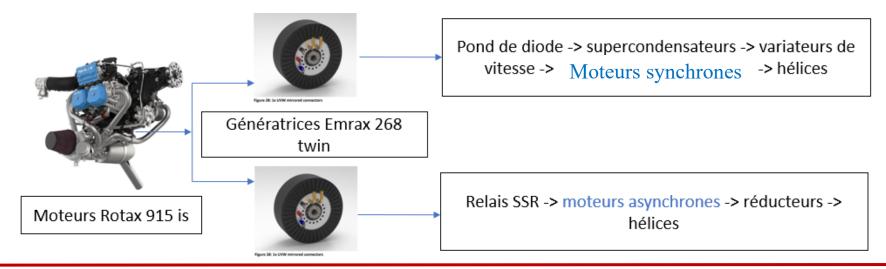
Surface de voilure identique

Liste des équipements

Nom de	e la configuration	Moteur	2 génératrices	Redresseur	Stockage	Relais SSr ou variateurs de vitesse	Moteurs asynchrones ou synchrones	Réducteurs et hélices
Configuration 1	E268 Tri1 H18 asynchrone	Rotax 915 is 99kW (en continu)	2 Emrax 268 avec 1 sortie triphasée	/	/	18 relais SSR	18 moteurs asynchrones	18 réducteurs + 18 hélices
Configuration 2	E268 Tri2 H18 asynchrone	Rotax 915 is 99kW	2 Emrax 268 avec 2 sorties triphasées	/	/	18 relais SSR	18 moteurs asynchrones	18 réducteurs + 18 hélices
Configuration 3	E268 Tri2 H18 synchrone	Rotax 915 is 99kW	2 Emrax 268 avec 2 sorties triphasées	4 ponts de diodes triphasés //	4 packs de supercondensateurs //	18 variateurs de vitesse	18 moteurs synchrones	18 réducteurs + 18 hélices
Configuration 4	E268 Hexa H18 synchrone	Rotax 915 is 99kW	2 Emrax 268 avec 1 sortie hexaphasée	2 ponts de diodes hexaphasés//	2 packs de supercondensateurs //	18 variateurs de vitesse	19 moteurs synchrones	18 réducteurs + 18 hélices
Configuration 5	E268 Hexa H36 synchrone	Rotax 915 is 99kW	2 Emrax 268 avec 1 sortie hexaphasée	2 ponts de diodes hexaphasés//	2 packs de supercondensateurs //	36 variateurs de vitesse	20 moteurs synchrones	36 hélices

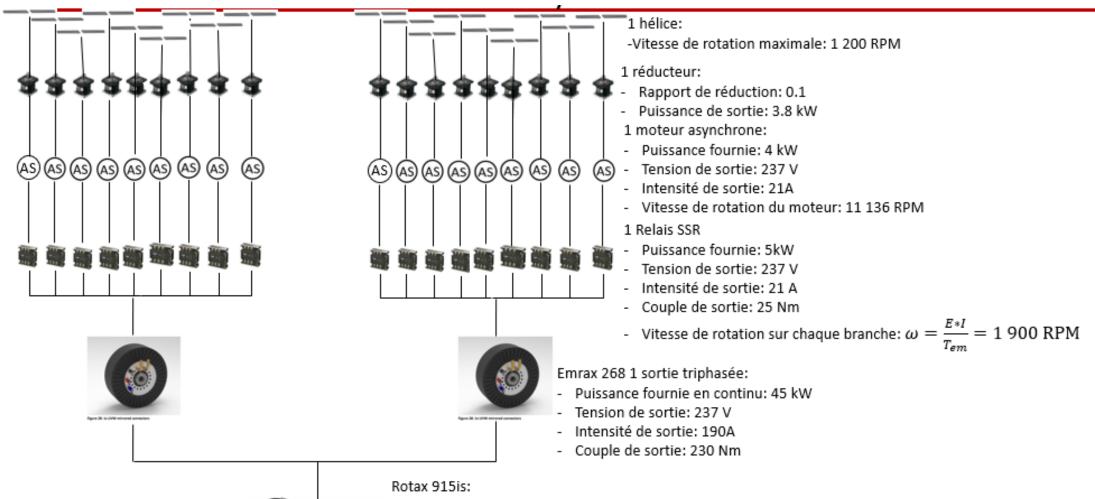
Etude des performances de différentes configurations

Etude des performances Etude de la structure Scénarii de vol Conclusion Cahier des charges de différentes propulsive configurations Analyse des 5 Structure avec 18 Cahier des charges de Vol stationnaire Axes à suivre configurations moteurs l'appareil Structure avec 36 Synthèse Vol vertical Rendements moteurs Cahier des charges de Bilan des masses et Vol horitontal la structure propulsive Tubes et câbles des coûts Comparaison des Vol en montée Liste des équipements chaines de puissance Vol en virage Virage en montée

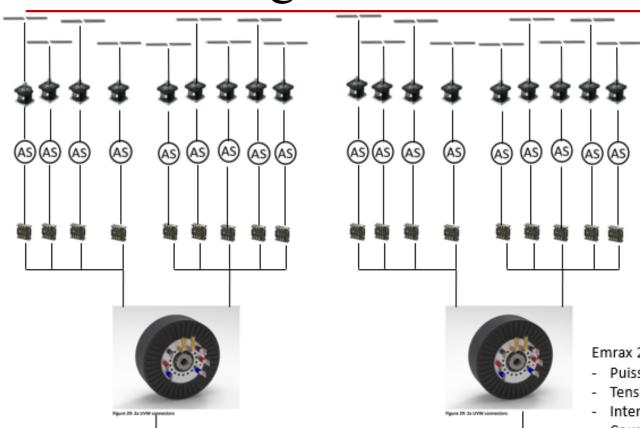


Présentation des différents cas étudiés

5 configurations de chaine de puissance ont été étudiées :


- Configuration 1 : 2 Emrax 268 triphasés 1 sortie / 18 moteurs asynchrones
- Configuration 2 : 2 Emrax 268 triphasés 2 sorties (4 sorties triphasées) / 18 moteurs asynchrones
- Configuration 3 : 2 Emrax 268 triphasés 2 sorties / 18 moteurs synchrones
- Configuration 4 : 2 Emrax 268 hexaphasés / 18 moteurs synchrones
- Configuration 5 : 2 Emrax 268 hexaphasés / 36 moteurs synchrones

Configuration 1 : E268 Tri1 H18 asynchrone



- Puissance fournie: 104kW (Décollage) et 99kW(continu)
- 2300 RPM en output
- Conso: 34kg/h

Configuration 2: E268 Tri2 H18 asynchrone

1 hélice:

Vitesse de rotation maximale: 1200 RPM

1 réducteur:

Rapport de réduction: 0.1
 Puissance de sortie: 3.8 kW

1 moteur asynchrone:

Puissance fournie: 4kW

- Tension de sortie: 237 V

Intensité de sortie: 21A

Vitesse de rotation du moteur: 11 136RPM

1 Relais SSR

Puissance fournie: 5 kW (branche 4 relais) et 4kW (branche avec 5 relais)

Tension de sortie: 237 V

Intensité de sortie:23A (branche avec 4 relais) et 19A (branche avec 5 relais)

Couple de sortie: 29 Nm (branche avec 4 relais) et 23 Nm (branche avec 5 relais)

Emrax 268 2 sorties triphasées :

- Puissance fournie: 45kW

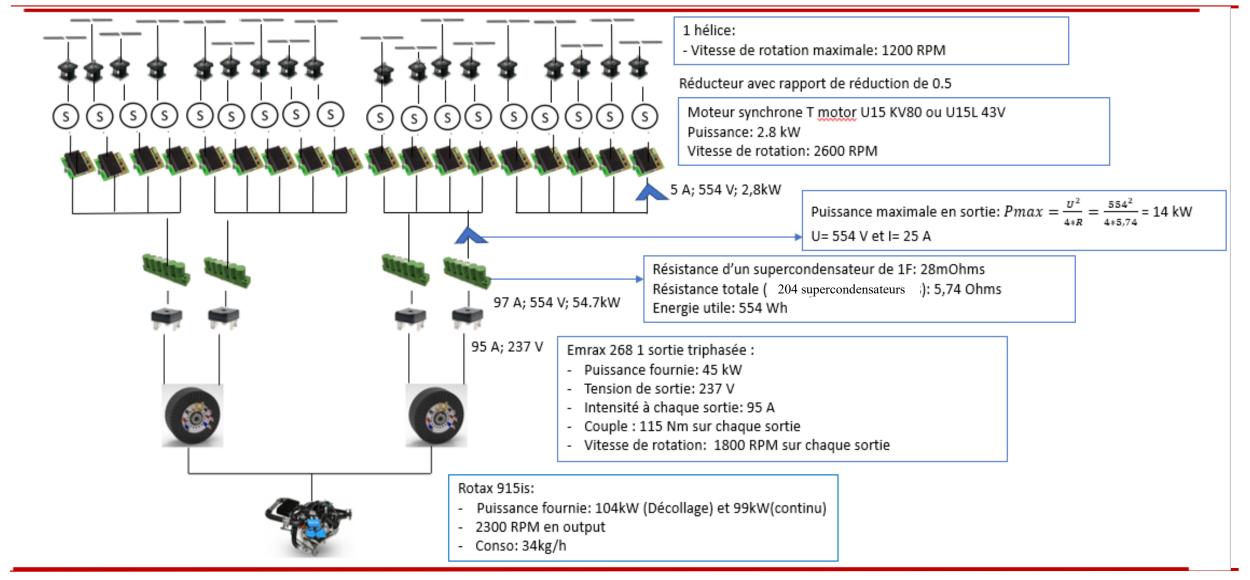
Tension de sortie: 237 V

Intensité à chaque sortie =190A / 2 = 95 A

- Couple de sortie: 115 Nm sur chaque sortie

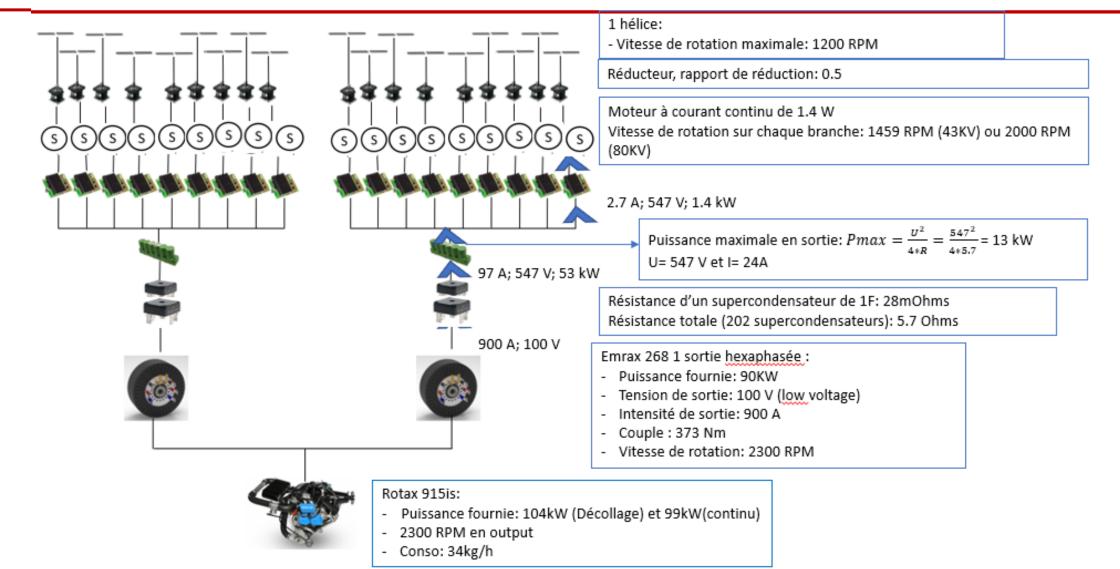
Rotax 915is:

Puissance fournie: 104kW (Décollage) et 99kW(continu)

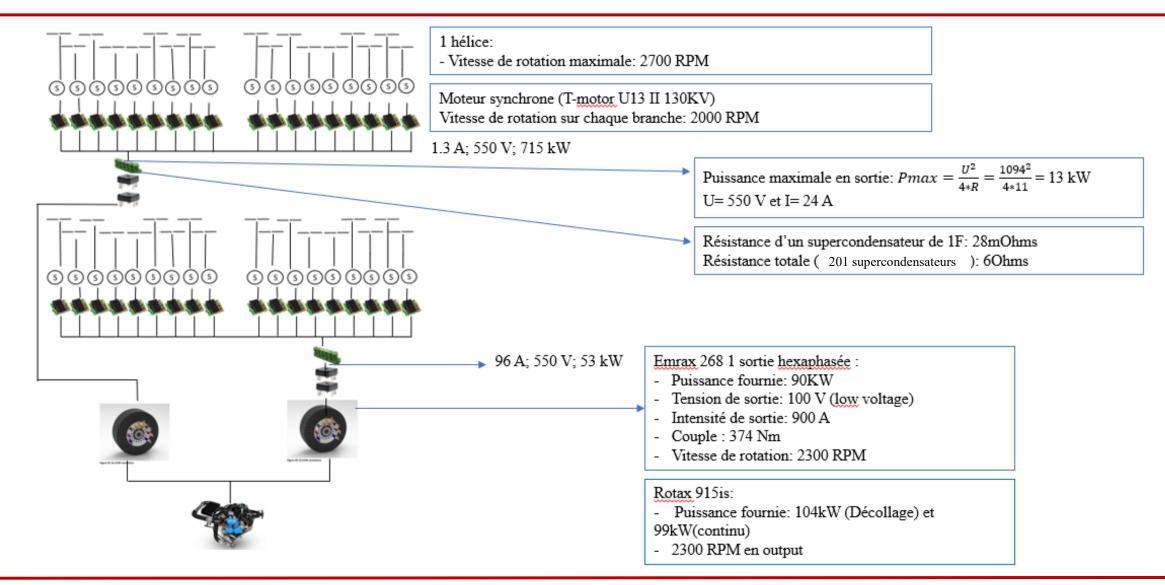

2300 RPM en output

Conso: 34kg/h

Configuration 3: E268 Tri2 H18 synchrone



Configuration 4: E268 Hexa H18 synchrone



Configuration 5: E268 Hexa H36 synchrone

Choix du moteur

Configuration 5: E268 Hexa H36 synchrone

Moteur U13 II 130KV

> 380 euros

Puissance fournie: 715 kW

➤ Vitesse de rotation: 2000 RPM

➤ Poussée fournie: 5765 N

Résumé des configurations

Nom de la co	onfiguration	Moteur	Puissance (W)	rotation (RPM)	2 génératrices	Puissance (W)	(V)	Redresseur	Stockage	vitesse	ou synchrones	(W)	Réducteurs et hélices	d'une hélice (RPM)
Configuration 1	E268 Tri1 H18 asynchrone				2 Emrax 268 avec 1 sortie triphasée			/	/	18 relais SSR	18 moteurs asynchrones	4 000	18 réducteurs + 18 hélices	1 200
Configuration 2	E268 Tri2 H18 asynchrone				2 Emrax 268 avec 2	00.000	227	/	1	18 relais SSR	18 moteurs asynchrones	4 000	18 réducteurs + 18 hélices	1 200
Configuration 3	E268 Tri2 H18 synchrone	Rotax 915 is	99 000	2300	sorties triphasées	90 000	237	4 ponts de diodes triphasés parallèles	4 packs de supercondensateurs (204 au total) parallèles	18 variateurs de vitesse	18 moteurs synchrones	2 800	18 réducteurs + 18 hélices	1 200
Configuration 4	E268 Hexa H18 synchrone				2 Emrax 268 avec 1 sortie hexaphasée			2 ponts de diodes hexaphasés parallèles	2 packs de supercondensateurs (202 au total) parallèles	18 variateurs de vitesse	18 moteurs synchrones	1 400	18 réducteurs + 18 hélices	1 200
Configuration 5	E268 Hexa H36 synchrone				2 Emrax 268 avec 1 sortie hexaphasée	90 000	100	2 ponts de diodes hexaphasés parallèles	3 packs de supercondensateurs (201 au total) parallèles	36 variateurs de vitesse	36 moteurs synchrones	715	36 hélices	2700

Rendements des chaines de puissance

Configuration	avec moteur asynchrone	Emrax 268	Relais SSR	Moteurs asynchrones	Réducteur			Total
Configuration 1	E268 Tri1 H18 asynchrone	0,92	0,9	0,76	0,94			0,6
Configuration 2	E268 Tri2 H18 asynchrone	0,92	0,9	0,76	0,94			0,6
Configuration	n avec moteur synchrone	Emrax 268	Pond de diode	Supercondensateur	Variateurs de vitesse	Moteur synchrones	Réducteur	Total
Configuration 3	E268 Tri2 H18 synchrone	0,92	0,5	1	0,99	0,9	0,94	0,4
Configuration 4	E268 Hexa H18 synchrone	0,92	0,95	1	0,99	0,9	0,94	
Configuration 5	E268 Hexa H36 synchrone	0,92	0,95	1	0,99	0,9		0,8

Bilan des masses et des coûts

Con	figuration	Masse en kg	Prix en euros	Rendements
Configuration 1	2 Emrax 268 triphasés 1 sortie / 18 moteurs asynchrones	405	50 400	0.6
Configuration 2	2 Emrax 268 triphasés 2 sorties (4 sorties triphasées) / 18 moteurs asynchrones	405	50 400	0.6
Configuration 3	2 Emrax 268 triphasés 2 sorties / 18 moteurs synchrones	522	61 700	0.4
Configuration 4	2 Emrax 268 hexaphasés / 18 moteurs synchrones	395	61 200	0.7
Configuration 5	2 Emrax 268 hexaphasés / 36 moteurs synchrones	396	143 000	0.8

En vert la valeur la plus élevée et en rouge la valeur la plus faible

Matrice de quotation

	Configuration	Stockage (3) ou pas de stockage (1)	Relais SSR (1) Variateur de vitesse (3)	Moteurs asynchrones (1) ou synchrones (3)	Rendements	Masse totale de la chaine de puissance	Prix	Total
Configuration 1	2 Emrax triphasé 1 sortie / 18 moteurs asynchrones	1	1	1	1	2	3	9
Configuration 2	2 Emrax triphasé 2 sorties = 4 sorties triphasées / 18 moteurs asynchrones	1	1	1	1	2	3	9
Configuration 3	Emrax triphasé 2 sorties / 18 moteur synchrones	3	3	3	1	1	2	13
Configuration 4	Emrax hexaphasé / 18 moteurs synchrones	3	3	3	2	2	2	15
Configuration 5	Emrax hexaphasé / 36 moteurs synchrones	3	3	3	3	3	1	16

<u>Légende</u>:

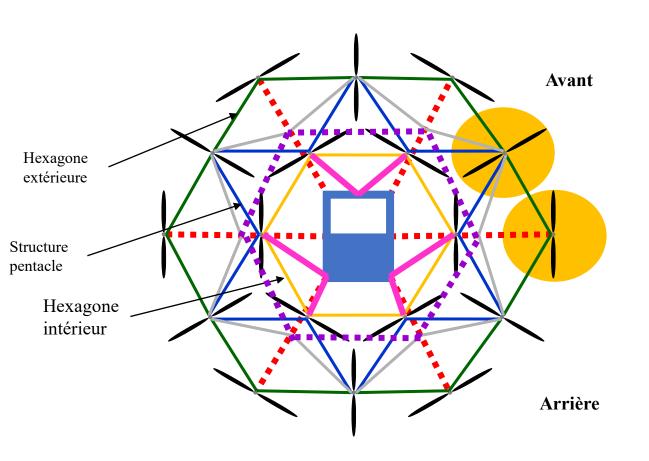
1: mauvais

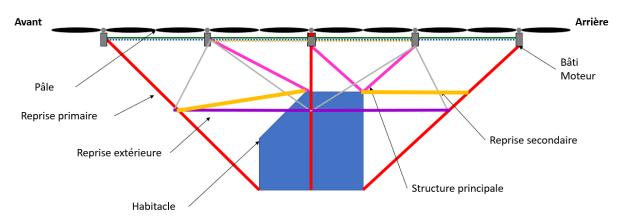
2: moyen

3: bon

La **configuration** 5 est la meilleure configuration

Etude de la structure propulsive

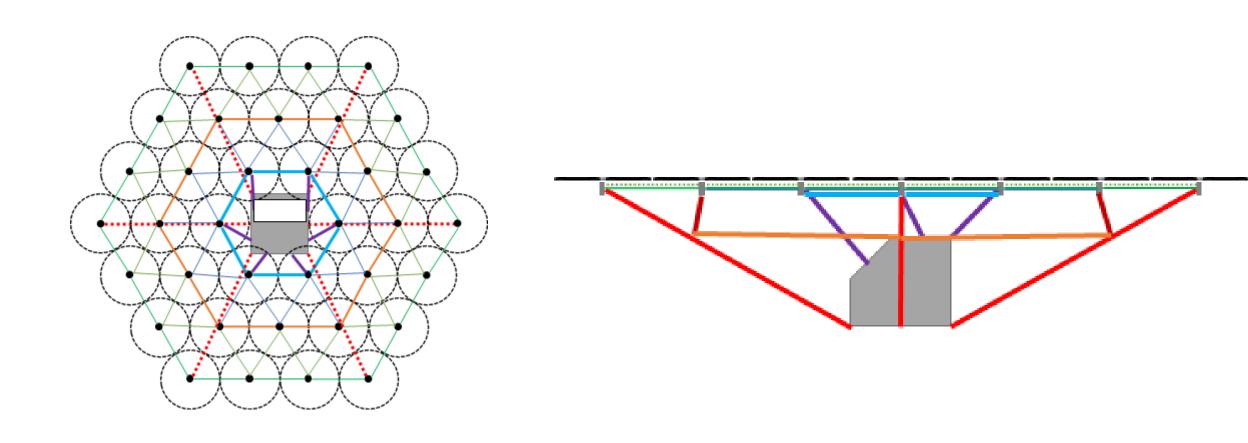

Etude des performances Etude de la structure Scénarii de vol Conclusion Cahier des charges de différentes propulsive configurations Analyse des 5 Structure avec 18 Cahier des charges de Vol stationnaire Axes à suivre configurations moteurs l'appareil Structure avec 36 Vol vertical Synthèse Rendements moteurs Cahier des charges de Bilan des masses et Vol horitontal la structure propulsive Tubes et câbles des coûts Comparaison des Vol en montée Liste des équipements chaines de puissance Vol en virage Virage en montée



Structure avec 18 moteurs

Configurations 1 à 4

Vue de dessus


Vue de côté

Structure avec 36 moteurs

Configuration 5

Vue de dessus

Vue de côté

Choix de l'hélice

Configuration 36 rotors

Hélice carbone P57x22 (paire) - TMOTOR

- > 2399 euros
- ➤ Vitesse de rotation: 2000 RPM
- > Poussée fournie: 5765 N

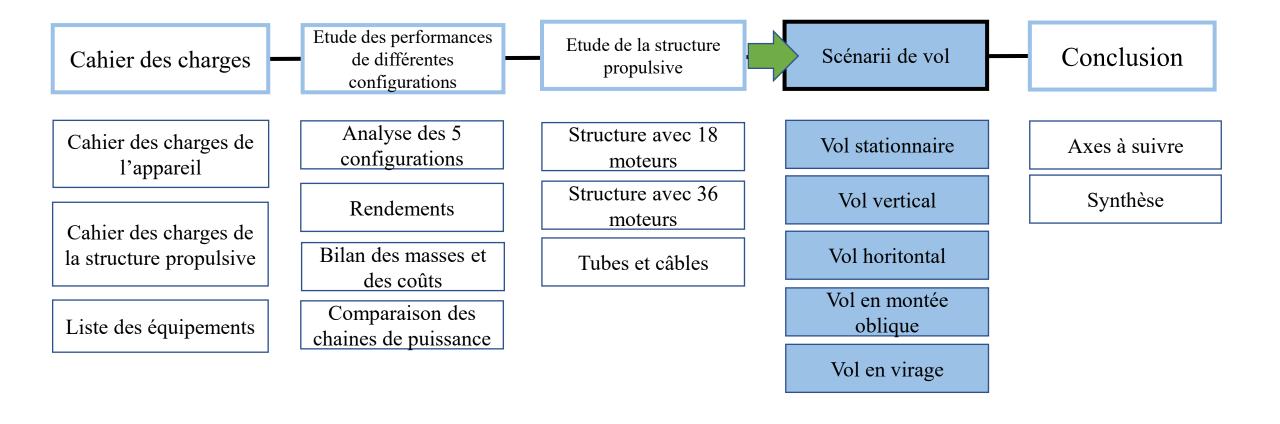
Tubes

- ⇒ Module de Young minimal à respecter
- ⇒ Coefficient de résistances aux efforts de cisaillements minimal à respecter
- ⇒ Masse maximale de la structure totale à prendre en compte

Tubes en composite

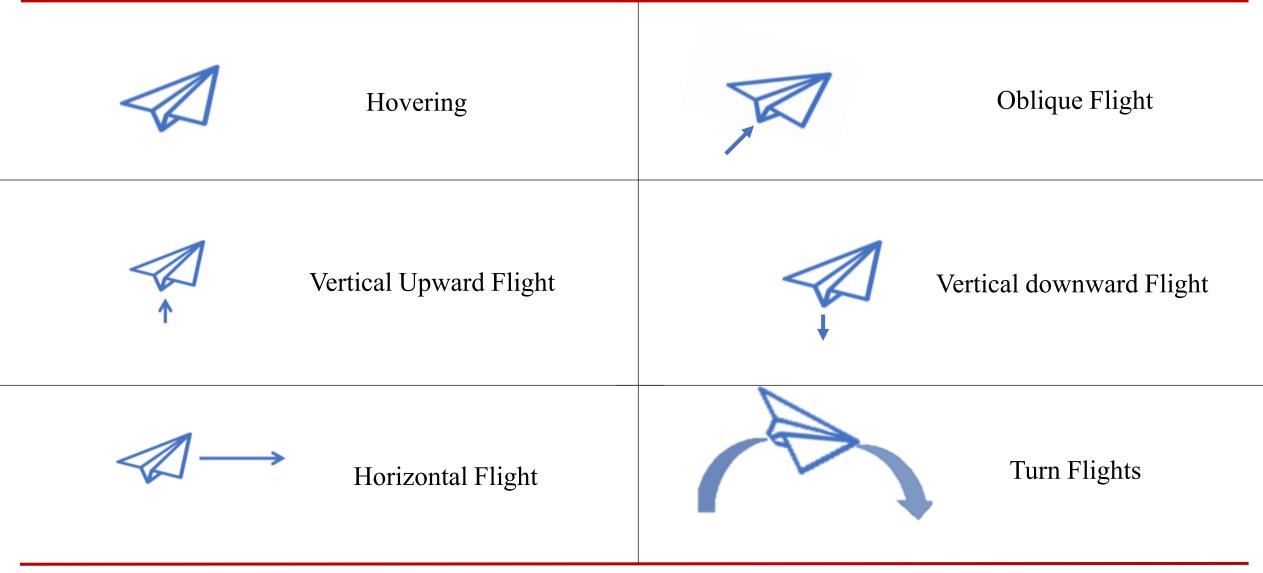
Creux pour le passage des câbles + allègement

Câbles électriques


	Cuivre	Aluminium
Chute de tension relative (V)	4	4
Section de câble (en mm^2)	2.3	3.7
Masse par surface (kg/m^2)	35	95
Prix au kg	1.2 euros/1 kg	0.1 euros /1 kg

=> Câbles électriques en aluminium à privilégier

Scénarii de vol



Presentation of flight scenarios

Hovering

Formulas:

- Induced Speed
$$v_i = \sqrt{\frac{F}{2\rho S}}$$

- Thrust $F = 2\rho S v_i^2$

- Thrust
$$F = 2\rho S v_i^2$$

- Power
$$P = Fv_i^2 = \sqrt{\frac{F^3}{2\rho S}}$$

		7	Z_min = 0 feets	3	Z_max = 14 000 feets			
		H18	H36 (62)	H36 (57)	H18	H36 (62)	H36 (57)	
	Induced speed	6,62	6,56	7,12	8,21	8,13	8,83	
	Horizontal speed	0,00	0,00	0,00	0,00	0,00	0,00	
Havering	Vertical velocity	0,00	0,00	0,00	0,00	0,00	0,00	
Hovering	Thrust	7354,99	7354,99	7354,99	7354,99	7354,99	7354,99	
	Theorical Power	48,72	48,23	52,35	60,41	59,81	64,91	
	Rotax power	60,90	60,28	65,43	75,52	74,76	81,14	

- Power value in accordance with the expected values
- Lower area for the 57-inch rotor

Vertical Upward Flight

Formulas:

- Initial Induced Speed $v_{i0} = \sqrt{\frac{F}{2\rho S}}$
- Induced Speed $v_i = \frac{v_{i0}}{\frac{v_v}{v_{i0}} + \sqrt{1 + (\frac{v_v}{2v_{i0}})}}$
- Thrust $F = 2\rho S(v_i + v_v)v_i$
- Power $P = F(v_i + v_v) = Fv_i + Fv_v$

		Z			Z_max = 14 000 feets			
		H18	H36 (62)	H36 (57)	H18	H36 (62)	H36 (57)	
	Induced speed	5,04	4,98	5,51	6,57	6,49	7,16	
Vertical	Horizontal speed	4,00	4,00	0,00	4,00	4,00	0,00	
	Vertical velocity	0,00	0,00	0,00	0,00	0,00	0,00	
Upward	Thrust	7646,58	7651,05	7616,42	7564,01	7567,38	7541,32	
flight	Theorical Power	69,15	68,71	72,46	79,92	79,36	84,14	
	Rotax power	86,44	85,89	90,57	99,91	99,20	105,18	

- Power values in accordance with the expected values
- Within limits defined by Rotax

Vertical downward flight

Formulas:

- Initial Induced Speed $\,v_{i0}=\sqrt{rac{F}{2
 ho S}}\,$
- Induced Speed $v_i = \frac{v_{i0}}{\frac{v_v}{v_{i0}} + \sqrt{1 + (\frac{v_v}{2v_{i0}})}}$
- Thrust $F = 2\rho S(v_i + v_v)v_i$
- Power $P = F(v_i + v_v) = Fv_i + Fv_v$

		7	_min = 0 feets	i	Z_max = 14 000 feets			
		H18	H36 (62)	H36 (57)	H18	H36 (62)	H36 (57)	
	Induced speed	9,65	10,97	10,89	9,60	10,89	10,89	
Vertical	Horizontal speed	-4,00	-4,00	-4,00	-4,00	-4,00	-4,00	
Downward	Vertical velocity	0,00	0,00	0,00	0,00	0,00	0,00	
Flight	Thrust	9133,03	9186,89	8799,00	8326,43	8353,24	8157,65	
Flight	Theorical Power	51,58	51,41	53,12	58,00	57 , 58	61,24	
	Rotax power	64,47	64,27	66,40	72,50	71,98	76,55	

- Power values in accordance with the expected values
- Downward Flight's Control

Horizontal flight

Formulas:

- Initial Induced Speed $v_{i0} = \sqrt{rac{F}{2
 ho S}}$
- Induced Speed $v_i = \frac{v_{i0}}{\frac{v_h}{v_{i0}} + \sqrt{1 + (\frac{v_h}{2v_{i0}})}}$
- Thrust $F = 2\rho S \sqrt{v_i^2 + v_h^2} v_i$
- Power $P = Fv = F\sqrt{v_i^2 + v_h^2}$

		Z		;	Z_max = 14 000 feets			
		H18	H36 (62)	H36 (57)	H18	H36 (62)	H36 (57)	
	Induced speed	4,03	3,98	4,46	5,42	5,35	5 <i>,</i> 97	
	Horizontal speed	47,22	47,22	47,22	47,22	47,22	47,22	
Horizontal	Vertical velocity	0,00	0,00	0,00	0,00	0,00	0,00	
Flight	Thrust	6179,55	6199,75	6043,41	5814,01	5828,25	5721,50	
	Theorical Power	56,47	56,50	56,41	57,16	57,07	58,04	
	Rotax power	70,59	70,63	70,51	71,45	71,33	72,55	

- Power value in accordance with the expected values
- H36 and H18 equivalent
- Large margin available for cornering

Oblique Flight

Formulas:

- Initial Induced Speed
$$v_{i0} = \sqrt{rac{F}{2
ho S}}$$

- Induced Speed
$$v_i = \frac{v_{i0}}{\frac{\sqrt{v_v^2 + v_h^2}}{v_{i0}} + \sqrt{1 + (\frac{\sqrt{v_v^2 + v_h^2}}{2v_{i0}})}}$$

_	Thrust $F = 2\rho S_{\gamma}$	$\sqrt{(v_i + v_v)^2 + v_h^2} v_i$
	1	

-	Power $P =$	Fv =	F	$\overline{(v_i)}$	$+v_1$	<u>,)2</u>	+	$\overline{v_h^2}$
---	-------------	------	---	--------------------	--------	------------	---	--------------------

		Z	min = 0 feets		Z_max = 14 000 feets		
		H18	H18 H36 (62) H36 (57)			H36 (62)	H36 (57)
	Induced speed	3,26	3,20	4,82	5,68	5,83	5,88
	Horizontal speed	38,22	38,2 5	38,2 5	38,2 5	38,23	35, 22
Oblique	Vertical velocity	3,00	3,00	3,00	3,00	3,00	4,00
Upward Flight	Thrust	7898,99	89 00,08	8046,42	7903,68	7928,93	7882,32
	Theorical Power	90,36	90,50	92,69	86,0 9	93,89	98,89
	Rotax power	96,70	96,38	94,51	105,23	104,75	104,87

- Power value in accordance with the expected values
- H36 and H18 equivalent
- Oblique flight at Z max considered exceptional and can therefore be accepted because below 105 kW

Horizontal turn flight

62 inches Model

Scenario	Inclination in degree °	Load Factor	Theoretical power for this move (kW)	Rotax power used to move (kW)
No Turn	0	0,79	0	0,00
	5	0,80	0,22	0,27
Low Turn	10	0,80	0,88	1,10
	15	0,82	2,01	2,52
	20	0,84	3,66	4,58
Medium Turn	2 5	0,87	5,90	7,37
iviedium Turn	30	0,91	8,83	11,04
	35	0,97	12,60	15,75
	40	1,03	17,43	21,79
Tight Turn	45	1,12	23,64	29,55
	50	1,23	31,71	39,64

57 inches Model

Scenario	Inclination in degree °	Load Factor	Theoretical power for this move (kW)	Rotax power used for this move (kW)
No Turn	0	0,78	0	0,00
	5	0,78	0,21	0,27
Low Turn	10	0,79	0,86	1,08
	15	0,81	1,98	2,47
	20	0,83	3,60	4,49
Medium Turn	25	0,86	5,79	7,24
iviedium Turn	30	0,90	8,67	10,83
	35	0,95	12,37	15,46
	40	1,02	17,11	21,39
Tight Turn	45	1,10	23,20	29,01
	50	1,21	31,13	38,92

- Turning up to 45° possible at 100% of max speed
- Others Tight turn possible conditionally

Oblique turn flight

62 inches Model

57 inches Model

Scenario	Inclination in degree °	Load Factor	Theoretical power for this move (kW)	Rotax power used to move (kW)
No Turn	0	1,05	0	0,00
	5	1,05	0,32	0,40
Low Turn	10	1,06	1,29	1,62
	15	1,08	2,96	3,70
	20	1,12	5,38	6,72
Medium Turn	25	1,16	8,66	10,83
iviedium Turn	30	1,21	12,96	16,21
	35	1,28	18,50	23,13
	40	1,37	25,59	31,99
Tight Turn	45	1,48	34,71	43,39
	50	1,63	46,57	58,21

Scenario	Inclination in degree °	Load Factor	Theoretical power for this move (kW)	Rotax power used for this move (kW)
No Turn	0	1,03	0	0,00
	5	1,04	0,32	0,39
Low Turn	10	1,05	1,27	1,59
	15	1,07	2,91	3,64
	20	1,10	5,29	6,62
Medium Turn	25	1,14	8,53	10,66
iviedium Turn	30	1,19	12,76	15,95
	35	1,26	18,21	22,77
	40	1,35	25,19	31,49
Tight Turn	45	1,46	34,17	42,71
	50	1,60	45,84	57,31

- 5° Low turn possible
- Potential Low, Medium and Tight turn conditionally

Summary Table

All values are expressed in kW for 57 inches Rotor's Model

Flight's Type	Theoretical Power requested	Rotax's Power	Average Power Margin	Extreme Power Margin
Hovering	64,91	81,14	17,86	23,86
Upward Flight	84,14	105,18	-6,18	-0,18
Downward Flight	61,24	76,55	22,45	28,45
Horizontal Flight	58,04	72 <i>,</i> 55	26,45	32,45
Oblique Flight	83,89	104,87	-5,87	0,13

Rotax consistent with the engine needs of the device

Conclusion

Etude des performances Etude de la structure Scénarii de vol Conclusion Cahier des charges de différentes propulsive configurations Analyse des 5 Structure avec 18 Cahier des charges de Vol stationnaire Axes à suivre configurations moteurs l'appareil Structure avec 36 Vol vertical Synthèse Rendements moteurs Cahier des charges de Bilan des masses et Vol horitontal la structure propulsive Tubes et câbles des coûts Vol en montée Comparaison des oblique Liste des équipements chaines de puissance Vol en virage

Axes à suivre

Réaliser la **mécanique de vol** et de **stabilisation** du Mini-Bee en configuration 36 rotors

Réaliser la **structure propulsive avec 36 moteurs**

Synthèse

Etude des performances de la chaîne de propulsion, structure, mécanique

Choix fait sur la configuration Emrax 268 hexaphasé, 36 moteurs synchrones

Synthèse envoyée aux autres écoles

