

MINI BEE

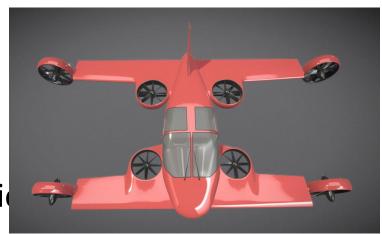
PERSONAL AIRCRAFT

Mini-Bee

Hybrid Octocopter, Beginning of TRL2 (Technology concept and/or application formulated)

Agenda

- Mini-Bee description
 - Concept and technical description
 - SWOT analysis
- TRL1 project
 - Partners and project history
 - TRL1 Tasks
 - Aerodynamic studies
- TRL2 project launch
 - Annexes: State of the art, Other innovative projects


Mini-Bee: 2PAX VIP VTOL

Mini-Bee description

- Project state : beginning of TRL2
 - Electric octocopter : 4 vertical + 4 tilt re
 - Hybrid energy: fuel + batteries
 - 2 seats, VIP configuration
- Characteristics :
 - VTOL capacity, short wings, 1.2 ton
 - Range 600km, max speed 300km/h
 - Electric controls and engines
- Goals and market
 - VIP, Air Ambulance, Individual Air Vehice
 - Estimated price 1m€ (for VIP)

Architecture

External tilt quadcopter

Central vertical quadcopter

Rear electric generator

Gullwing doors

Fuel generators

Battery kits

Tailwheel-type landing gear

Low noise nacelle

Biplane

Electric flight controls

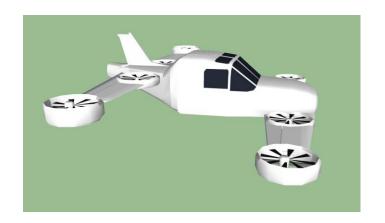
Retractable front landing gear

3D printed metallic structure

Technical description

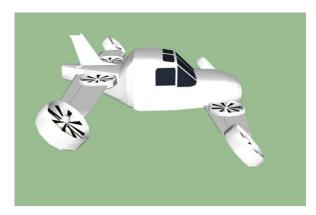
Aircraft characteristics

2 seats, VTOL, Short wing for cruise flight MTOW 1200 kg, Range 800km, Cruise speed 220 km/h Wing surface 15m², no control surface

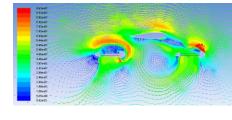

Engines

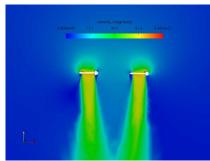
Central vertical quadcopter + External tilt quadcopter 4 hybrid fuel generator for central quad copter 4 electric engines for external tilt quadcopter Electronic control of engines power and tilt angles

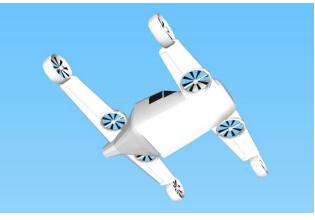

Cockpit interface

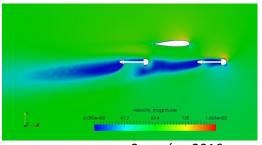

« Car like » pilot interface : Steering wheel, foot pedals, central screen

Take-off and flight transition




Vertical take-off

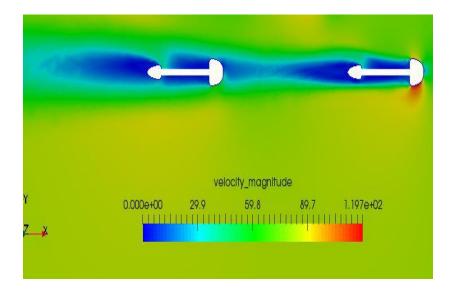


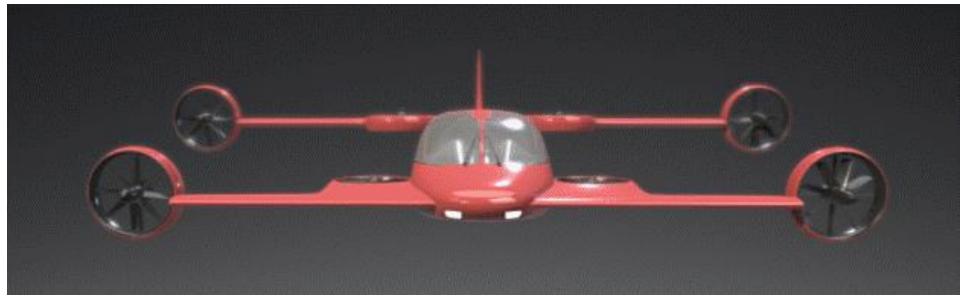

Tilt transition

Cruise flight

Supméca 2016

Take-off and tilt transition





By Estaca 2016

Cruise flight

Technical data

MTOW: 1200 kg

Structure: 320kg

Fuselage: 80kg

Payload : 220 kg (2 PAX)

• Systems : 125 kg

Engines: 240 kg (4 * Hybrid160kg + 4 Electric 80kg)

Batteries: 80kg

• Fuel: 140kg

Target for TRL3: MTOW 1000 kg

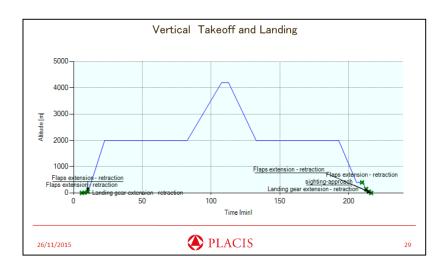
Costs

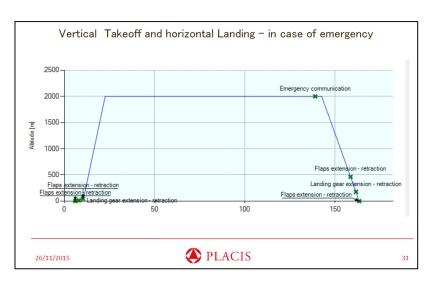
Total costs: 700k€

• System : 200k€

• Fuselage : 150k€

• Wing : 100k€


• Engines : 100k€


• Landing gear : 50k€

• Interior : 50k€

• Other : 50k€

Mission profile

Phase	Duration		Altitude (start)	Altitude (end)	Speed	Climb rate	Specific Consuption
	hour	Min	m	m	km/h	m/s	lb/Hp/h
Engine start-up	0	0,3	0	0	0	0	
Taxi out	0	4,5	0	0	60,0001	0	0,4
Flaps extension - retraction	Start time	60	-	-		-	-
Vertical Take off	0	0,8	0	45	0	0,9375	0,4
Landing gear extension - retraction	Start time	25	-	-			-
Rotors orientation	0	2	45	45	100,0001	0	0,
Flaps extension - retraction	Start time	85	-	-		-	-
Climb	0	12	45	2000	200,0002	2,7153	0,
1° cruise	1	0	2000	2000	299,9999	0	0,42
obstacle deviation (climb)	0	25	2000	4200	249,9998	1,4667	0,
Mini-cruise	0	5	4200	4200	249,9998	0	0,
obstacle deviation (scent)	0	20	4200	2000	270	-1,8333	0,4
2° cruise	1	0	2000	2000	300	0	0,42
Descent	0	13	2000	400	240	-2,0513	0,4
Holding	0	5	400	400	200	0	0,43
Flaps extension - retraction	Start time	80	-	-	-	-	-
2° rotors orientation	0	1	400	200	100	-3,3333	0,
Vertical Landing	0	4	200	0	20	-0,8333	0,4
Landing gear extension - retraction	Start time	25	-	-		-	-
sighting-approach	Start time	75	-	-	-	-	-
Taxi in	0	2	0	0	60	0	0,
Flaps extension - retraction	Start time	30	-	-	-	-	-
Engine shutdown	0	0,2	0	0	0	0	

26/11/2015

PLACIS

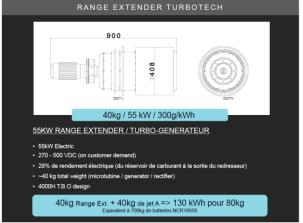
30

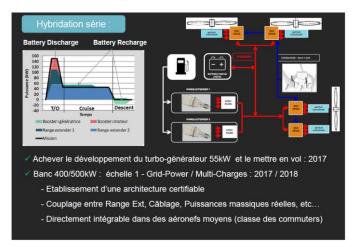
Engines for vertical rotor

Equipement proposed: 4 electric engines Yuneec Power Drive 40

		Yuneec Power Drive 40 [11]		
Dimensions	Length	163 mm		
	Width	240 mm		
Height		240 mm		
Weight		19 kg		
Power		40 kW at 2400 rpm		
Power to weight ratio		2,1 kW/kg		

Power 160 kW


- provided by 80kg of batteries (at 150kW/kg) during take-off
- and by fuel generator during cruise flight



Electric generator for vertical quadcopter


Equipement proposed: 4 Turbotech 55kW for central quad copter

Fuel energy: 220 kW for take-off and low speed flight

SWOT analysis

Strengths

- VTOL capacities
- Speed of an aircraft
- Double quadcopter back-up in case of engine failure
- Fuel energy range

Weakness

- New configuration
- Project at low TRL
- Aerodynamic and leight weight structure
- Propulsion and energy storage
- Project implementation
- Project funding

Opportunities

- Cost reduction :
 - Overall flight cost reduction compared to helicopter
 - Low purchasing & maintenance cost of engines
- New design space: tilt, octocopter
 - Weight / VTOL
- Project investment

Threats

- All electric helicopter
- All electric aircraft
- Tilt rotor (bi and quadri)
- Hybrid energy

Partners for R&D

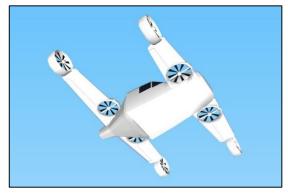
Project coordinator

TRL1 Basic Definition

POLITECNICO DI TORINO

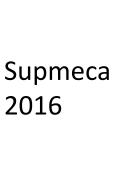
TRL2 Detailled Definition

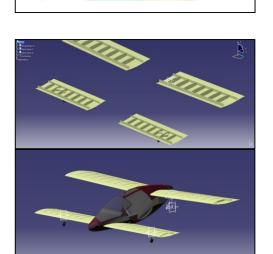
Project history


TRLO Project Launch (2015)

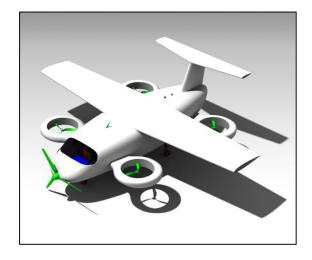
Studies 2015/2016

TRL1 Basic Definition (2016)

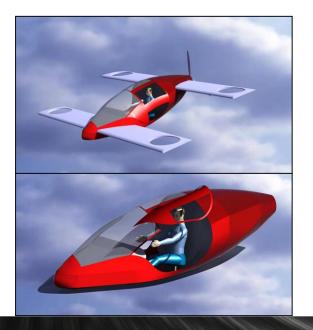

TRL2 Concept (2016)



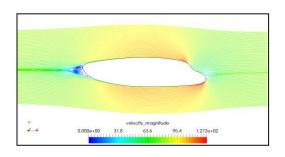
TRL1 project tasks



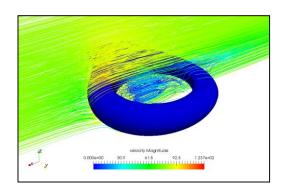
Polito 2015



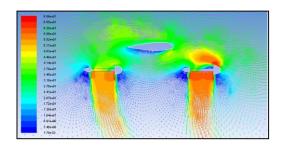
Estaca 2016 group1



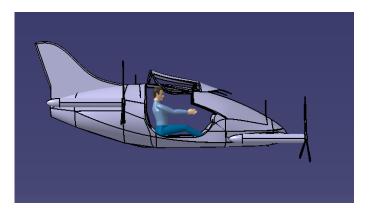
Supmeca & Polito 2016 (Placis)

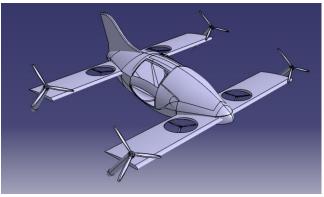


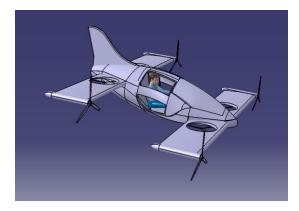
Estaca 2016 group2

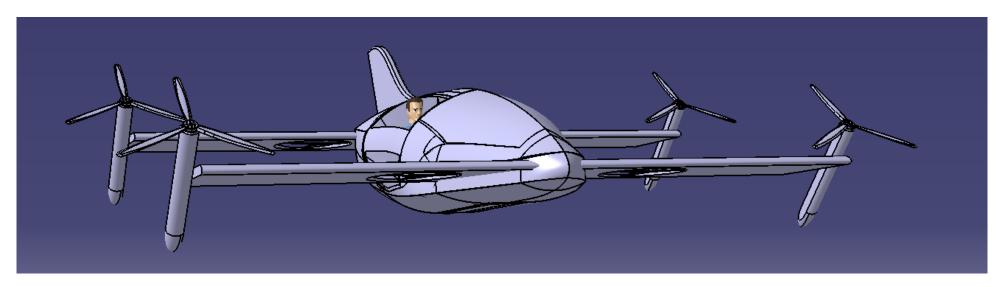

Aerodynamic studies

Cockpit shape optimization Supmeca 2016



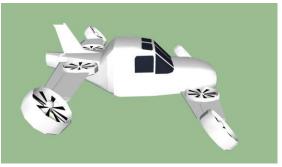

Rotor shape optimization Supmeca 2016




Vertical rotor air flow studies Supmeca 2016

Configuration at end of TRL1





Estaca Laval 2016

Mini-Bee project for TRL2

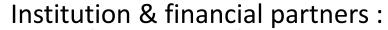
Mini-Bee (at end of TRL1)

2 PAX VIP

Electric Octocopter

Tilt quadcopter & vertical quadcopter

Hybrid energy: batteries & fuel


Overall main beeplane Project partners

Lesser Open Bee License 1-3

Coordinator:

Design:

Actions for Mini-Bee TRL2 Project

- Launch Mini-Bee TRL2 project :
 - Assess detailled technical configuration
 - Evaluate market opportunities, production and flight costs
 - Define partnership for TRL2 and TRL3
 - Draw project financial path
 - Investigate for lovemoney phase

Partners to be defined

Project sponsors

Electronics and equipement integration

Aircraft flight management control

Cokpit interface and project integration

Structure mettalic 3D printer

Aircraft manufacturer

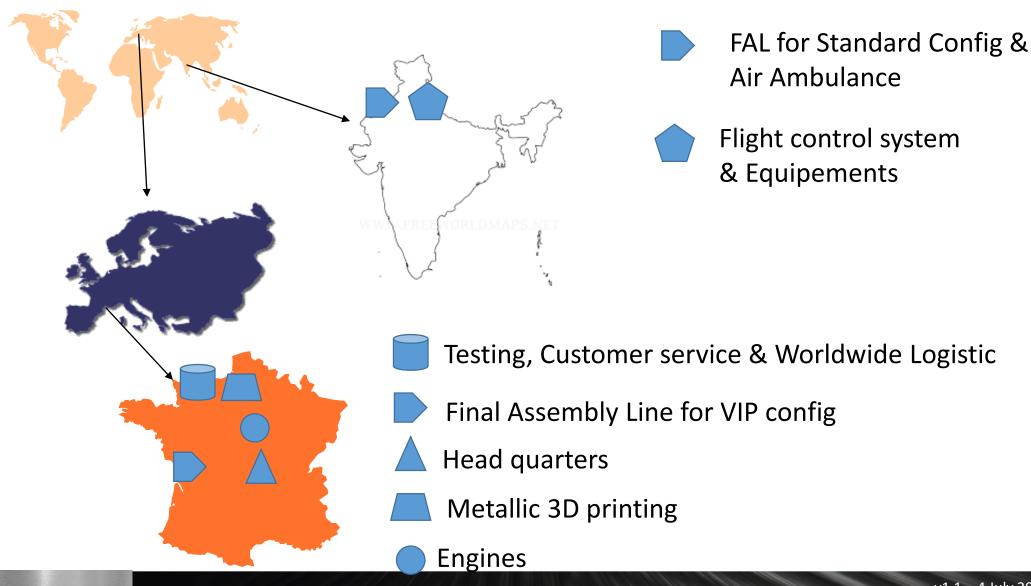
Luxury firm for VIP configuration VIP end users

Air Ambulance end user

World

France

India



Targeted Industrial Schem

Financial project path

TRL ▼	Statut	Début 🔻	Fin 🔻	Montant estimé (k€) ▼
0	Terminé	2014	2015	20
1	Terminé	2015	2016	50
2	En cours	2016	2017	200
3		2017	2019	2 000
4				5 000
5				10 000
6				15 000
7				20 000
8				25 000
9				25 000

Estimated overall project 100m€

Annexes

Individual Air Vehicules

State of the art

Cessna Skylane

- · Height: 2.84 m
- Wingspan: 10,97 m
- Lenght: 8,84 m
- Max Take-Off Weight: 1406 Kg
- Power: 230 hp
- Engine: lycoming IO-540-AB-1A5
- Maximum speed: 269 Km/h
- Range: 1695 KmPrice: 277 300 \$

Cessna TTX

- Height: 2,74 m
- Wingspan: 10,97 m
- Lenght: 7,68 m
- · Max Take-Off Weight: 1633 Kg
- Power: 310 hp
- Engine: turbo TSIO-550-c
- · Maximum Speed: 435 Km/h
- Range: 2315 Km
- Price: 733 950 \$

Aeromobil 3.0

- Height: 1,50 m
- Wingspan: 8.32 m
- · Lenght: 6 m
- · Power: 81 hp
- Engine: rotax 912
- Maximum speed: 200 Km/h
- Range: 700 Km

Robinson R44

- Height: 3,3 m
- · Rotor diameter: 10,1 m
- Lenght: 11,7 m
- Max Take-Off Weight: 1089 Kg
- Power: 248 hp
- Engine: lycoming IO-540-AE1A5
- · Maximum speed: 240 Km/h
- Range: 560 Km
- Price: 456 000 \$

Agusta Westland AW609

- Height: 5,1-6,6 m
- Wingspan: 11,7 m
- Lenght:13,3 m
- Max Take-Off Weight: 7200 Kg
- Power: 1900 hp
- Engine: Pratt &Whitney Canada PT6C-67A
- · Maximum speed: 616 Km/h
- Range:1390 Km
- Price: 10 000 000 \$

Other innovative projects

SoloTrek/Springtail

http://www.trekaero.com/

Trifan 600 XTI aircraft

Airbus E-fan (all electric)

E-volo

eHang (fin 2015)

Xplorair (2016)

Airbus (2016)

Boeing (2016)

Mini-Bee

Mini-Bee 2PAX VIP Hybrid Octocopter