MINI-BEE FLIGHT OPTIMIZATION

- Obstacle avoidance
- Polynomial approximation

BELMANT Cédric - CLERC Ilinka

INTRODUCTION

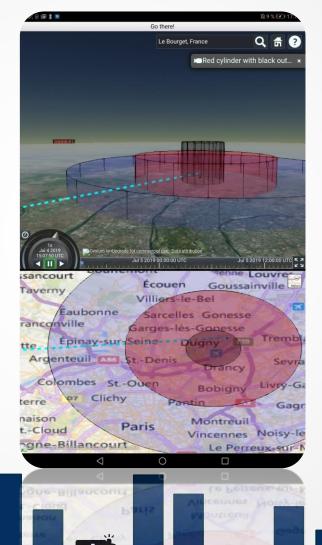
The Mini-Bee:

- * A Hybrid Vertical Take-Off and Landing aircraft (VTOL) - can fly as a plane, a helicopter or both
- * Aims to become a flying ambulance

Mini-Bee project:

* A collaborative project

A 3D collaborative GPS



PROBLEM SPECIFICATION

Help in flight management for the pilot

Optimization of some features

- * Find an eligible trajectory from S to F in a 3D environment
- * Take **static obstacles** into account
- * Avoid moving objects
- * Consider meteorological phenomena (as constraints or additional effects on the physical model)
- Favor air corridors or roads
- * Add intermediary points
- * Implement a collaborative aspect
- Minimize a given criterion like flight time or fuel consumption

STATE OF THE ART

Indirect methods

Generalized LQR theory

Not applicable

Approximate Dynamic Programming

No convergence proofs Very complex

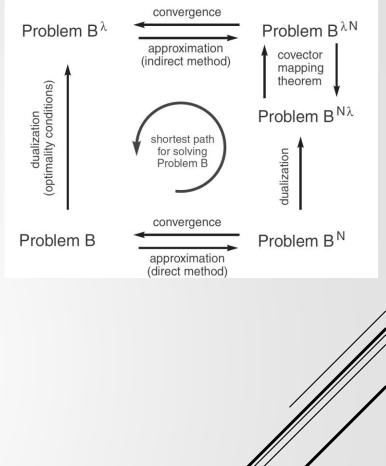
Direct methods

Finite elements

Applicable

Pseudospectral methods

Convergence proofs Already proven



SUMMARY

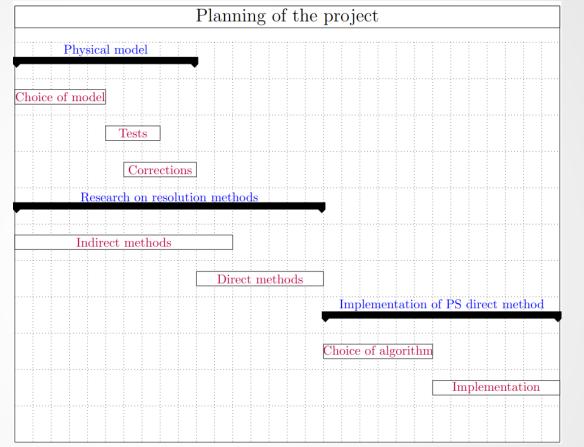
Introduction

I – Physical modeling

II – Resolution method

III – Progress

Conclusion



Conclusion

Mid-January

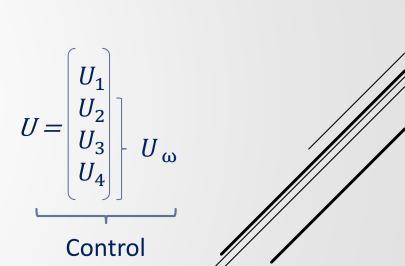
PHYSICAL MODELING

CONTROL

To simplify the problem, we first consider a **plane** configuration

In a aircraft we have commands on:

- The **thrust level** in the forward axis Control on the fuel consumption
- The **angular velocity** in all axes No incidence on the fuel consumption



$$\begin{cases} \dot{q} = \frac{1}{2} M_S(U_\omega) q \\ \dot{x} = v \\ \dot{v} = \frac{F_a}{m} + g + \frac{U_1}{m} (k_t v + i) \\ \dot{m} = -k_t U_1 \end{cases}$$

$$\dot{X}(t) = F(X(t), U(t)) \quad X(t) = \begin{cases} q(t) \\ x(t) \\ v(t) \\ m(t) \end{cases}$$

Hypothesis: the angular velocity is directly controlled

Position in the global coordinate system: $x(t) = (x_1(t) x_2(t) x_3(t))^T$

Speed in the global coordinate system: $v(t) = (v_1(t) v_2(t) v_3(t))^T$ F_a the aerodynamic force

g the gravitational force

m the mass

 $k_t > 0$ constant of proportionality depending on the engine type and atmospheric values

Hypothesis: the mass derivative is proportional to the thrust

COST
$$J(X, U, t_f) = \gamma (t_f - t_0) + (1 - \gamma) \int_{t_0}^{t_f} (k_t U_1(t)) dt$$

Cost on the time flight

 $\gamma = 1$

optimization on the flight time

 $\gamma \in [0,1]$

Cost on the fuel consumption

 $\gamma = 0$

optimization on the fuel consumption

OPTIMIZATION PROBLEM

	Find the solution to	$\min_{X,U,t_f} J(X,U,t_f)$	Minimisation of the cost
	Subject to	$\dot{X}(t) = F(X(t), U(t))$	espect of the physical equation
		$ U_i _{\infty} < U_i^{max}, \forall i \in [1, 4]$	
}		$U_1(t) \ge 0, \forall t \in \left[t_0, t_f\right]$	Respect of five
		$x(t_f) = x_f$	constraints on the
		$X(t_0) = X_0$	cost and the state
		$\left\ \frac{x_1 - x_c^{1,i}}{a^i} \right\ ^{p_1^i} + \left\ \frac{x_2 - x_c^{2,i}}{b^i} \right\ ^{p_2^i} + \left\ \frac{x_3 - x_c^{3,i}}{c^i} \right\ ^{p_3^i} \ge 1, \forall i \in [1, 1]$	N_c

RESOLUTION METHOD

RESOLUTION OF THE OPTIMIZATION PROBLEM

An infinite dimensional optimization problem in continuous time

$$X(t) = \begin{bmatrix} q(t) & \downarrow 4 \\ x(t) & \downarrow 3 \\ v(t) & \downarrow 3 \\ m(t) & \downarrow 1 \end{bmatrix} 11 \quad U = \begin{bmatrix} U_1 \\ U_2 \\ U_3 \\ U_4 \end{bmatrix} 4$$

Complex constraints

Polynomial basis

Finite Dimensional Problem Approximation

Legendre Pseudospectral resolution method

Solution

LEGENDRE PSEUDOSPECTRAL NONLINEAR

PROBLEM

$$\hat{X}_i(t_k^L) = f(\hat{X}_i(t_k^L), \hat{U}_i(t_k^L))$$

Lagrange polynomials : φ_n

$$\hat{X}_{i}(t_{k}^{L}) = \sum_{n=0}^{N} \hat{X}_{i,n} \, \dot{\varphi}_{n}(t_{k}^{L}) = \sum_{n=0}^{N} \hat{X}_{i,n} \, D_{kn} \qquad \hat{X}_{i}(t_{k}^{L}) = \sum_{n=0}^{N} \hat{X}_{i,n} \, \varphi_{n}(t_{k}^{L}) \qquad \hat{U}_{i}(t_{k}^{L}) = \sum_{n=0}^{N} \hat{U}_{i,n} \, \varphi_{n}(t_{k}^{L})$$

$$\hat{X}_i(t_k^L) = \sum_{n=0}^N \hat{X}_{i,n} \, \varphi_n(t_k^L)$$

$$\widehat{U}_i(t_k^L) = \sum_{n=0}^N \widehat{U}_{i,n} \, \varphi_n(t_k^L)$$

$$D_{kn} = \dot{\varphi}_{n}(t_{k}^{L})$$

$$D_{kn} = \frac{2}{t_{f} - t_{0}} \begin{cases} \frac{L_{N}(\tau_{k})}{L_{N}(\tau_{n})} \frac{1}{\tau_{k} - \tau_{n}}, & \text{if } k \neq n \\ -\frac{N(N+1)}{4}, & \text{if } k = n = 0 \\ \frac{N(N+1)}{4}, & \text{if } k = n = N \\ 0, & \text{otherwise} \end{cases}$$

$$\sum_{n=0}^{N} \hat{X}_{i,n} D_{kn} = f(\hat{X}_i(t_k^L), \hat{U}_i(t_k^L))$$

Conclusion

REWRITED OPTIMIZATION PROBLEM

Find the solution to $\min_{\hat{X},\hat{U},t_f} J(\hat{X},\hat{U},t_f)$ Minimisation of the cost

Subject to

$$\left\| \sum_{n=0}^{N} \widehat{X}_{i,n} D_{kn} - f\left(\widehat{X}(t_k^L), \widehat{U}(t_k^L)\right)_i \right\| - \delta \le 0, \forall i \in [1, 11]$$
 Respect of the physical equation : $\dot{X} = F(X, U)$

$$-\delta \leq 0, \forall i \in [1,11]$$

Respect of five

constraints on the

cost and the state

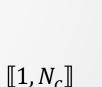
$$\|\widehat{U}_i\|_{\infty} - \widehat{U}_i^{max} < 0, \forall i \in [1, 4]$$

$$-\widehat{U}_1(t_n^L) \le 0, \forall n \in [0, N]$$

$$\left\|\hat{x}_i(t_N^L) - \hat{x}_f^i\right\|_{\infty} - \delta \le 0, \forall i \in [1, 11]$$

$$\|\hat{X}_{i}(t_{0}^{L}) - \hat{X}_{0}^{i}\|_{\infty} - \delta \leq 0, \forall i \in [1, 11]$$

$$1 - \left\| \frac{\hat{x}_1 - x_c^{1,i}}{a^i} \right\|^{p_1^i} - \left\| \frac{\hat{x}_2 - x_c^{2,i}}{b^i} \right\|^{p_2^i} - \left\| \frac{\hat{x}_3 - x_c^{3,i}}{c^i} \right\|^{p_3^i} \le 0, \forall i \in [1, N_c]$$



PROGRESS

INVESTIGATED ALGORITHMS

Global optimization (NOMAD)

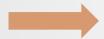
- Blackbox optimization
- ★ Very slow
- Poor parametrization

Discovery of the PS method

12/16

Legendre PS method

- Proprietary versions (MATLAB, optimal control toolboxes...)
- Only one open-source C++ project
 Complex code, hard to customize and debug



Implementation of a PS algorithm in Python (in progress)

SOFTWARE DEVELOPMENT

Requirements

- * Fast optimization (equivalent to C++)
- **Easy** to use, develop and interface

ADOL-C (automatic differentiation)

IPOPT (nonlinear optimizer)

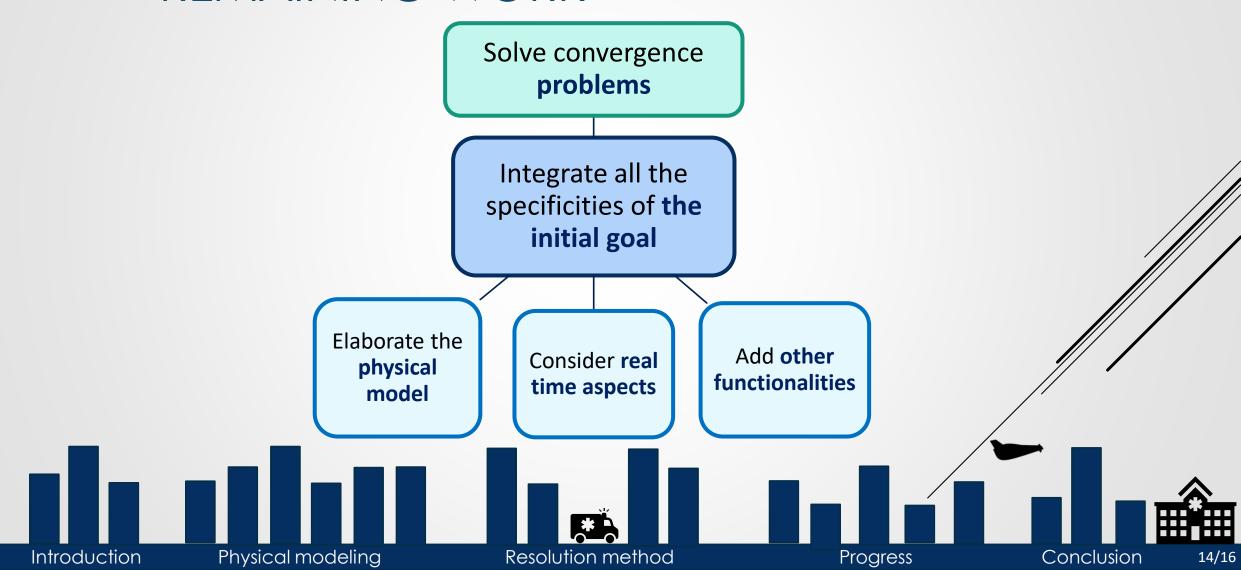
Just-in-Time compilation (*numba*)

All the building blocks are implemented...

...but convergence is not achieved



REMAINING WORK



CONCLUSION

Physical modeling

Resolution method

PROJECT PROGRESS

Construction of a 3D GPS for the Mini-Bee project

Simple case:

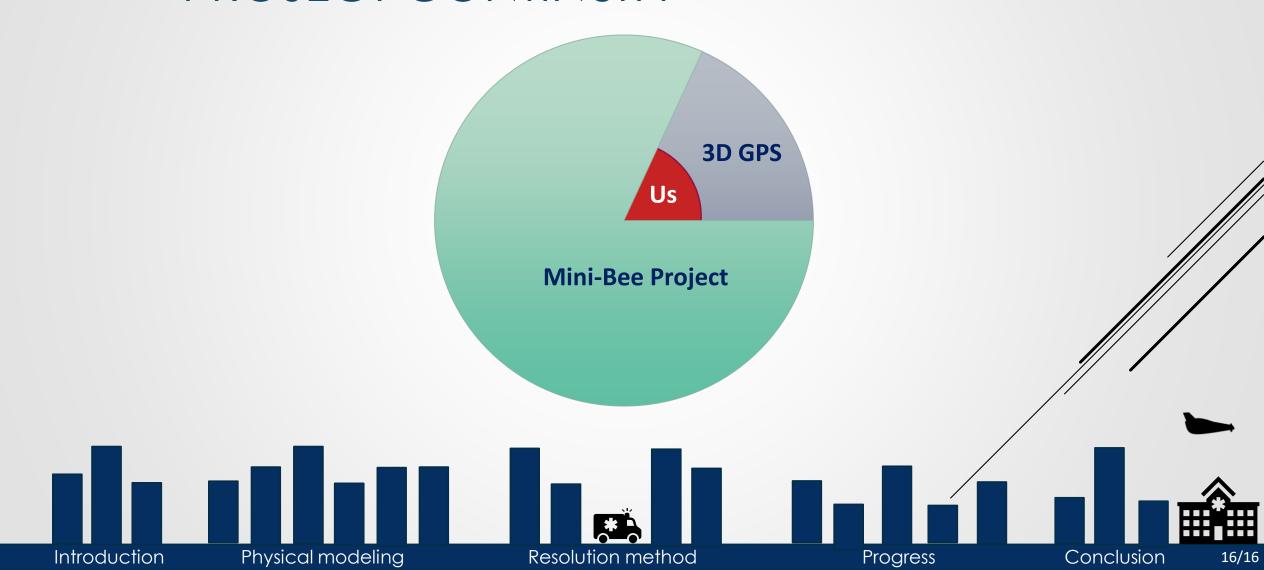
- * Plane configuration
- * Few initial specifications
- Still a complex optimization problem to solve

Writing of a physical model

Finding of an appropriate method

15/16

PROJECT CONTINUITY

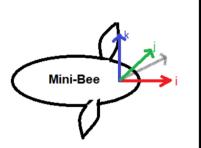


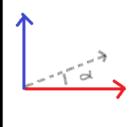
COORDINATE SYSTEM

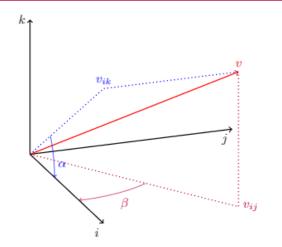
Body coordinate system

Attack angle

Sideslip angle





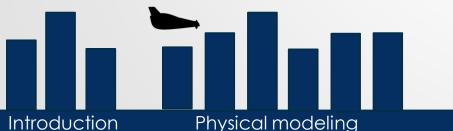


$$i = \begin{pmatrix} 2(q_0^2 + q_1^2) - 1 \\ 2(q_1q_2 + q_0q_3) \\ 2(q_1q_3 - q_2q_0) \end{pmatrix}$$

Quaternions:

- * Dimension 4 elements representing the aircraft attitude
- * Numerically more stable than Euler angles but more complex to $represent_{q_0(t)}$

$$\vec{q}(t) = \begin{pmatrix} q_0(t) \\ q_1(t) \\ q_2(t) \\ q_3(t) \end{pmatrix}$$



AERODYNAMIC FORCES

Wind frame

$$F_{a} = F_{D} + F_{L} + F_{C}$$

$$F_{D} = \eta_{a} \|v_{a}\|^{2} C_{D} x_{a} \quad \text{Drag coefficient}$$

$$C_{X} \\ C_{Y} \\ C_{Z} \end{pmatrix} = P_{B \to W} \begin{pmatrix} -C_{D} \\ -C_{C} \\ C_{L} \end{pmatrix}$$

$$F_{A} = F_{X} + F_{Y} + F_{Z}$$

$$F_{X} = \eta_{a} \|v\|^{2} C_{X} i$$

$$F_{Y} = \eta_{a} \|v\|^{2} C_{Y} j$$

$$F_C = \eta_a ||v_a||^2 C_C z_a$$
 Cross-wind coefficient

$$P_{B\to W} = \begin{pmatrix} \cos\alpha\cos\beta & -\cos\alpha\sin\beta & \sin\alpha\\ \sin\beta & \cos\beta & 0\\ -\sin\alpha\cos\beta & \sin\alpha\sin\beta & \cos\alpha \end{pmatrix}$$

Body frame

$$F_{a} = F_{X} + F_{Y} + F_{Z}$$

$$F_{X} = \eta_{a} \|v\|^{2} C_{X} i$$

$$F_{Y} = \eta_{a} \|v\|^{2} C_{Y} j$$

$$F_{Z} = \eta_{a} \|v\|^{2} C_{Z} k$$

CONSTRAINTS

$$||U_i||_{\infty} < U_i^{max}, \forall i \in [1, 4]$$

Boundary condition on the **control**

$$U_1(t) \ge 0, \forall t \in [t_0, t_f]$$

Positivity of the thrust

$$x(t_f) = x_f$$

Constraint on the final position

$$X(t_0) = X_0$$

Constraint on the initial state

$$\left\| \frac{x_1 - x_c^{1,i}}{a^i} \right\|^{p_1^i} + \left\| \frac{x_2 - x_c^{2,i}}{b^i} \right\|^{p_2^i} + \left\| \frac{x_3 - x_c^{3,i}}{c^i} \right\|^{p_3^i} \ge 1, \forall i \in [1, N_c]$$

Obstacle avoidance constraints

JACOBI AND LEGENDRE POLYNOMIALS

Jaco Polynomials

$$L^2_{\omega}([-1,1]) = \{f:[-1,1] \to \mathbb{R}, \int_{-1}^1 f(\tau)^2 \omega(\tau) d\tau < \infty\}$$

 $(P_i) \in \mathbb{P} \subset L^2_{\omega}([-1,1])$ a family of **orthogonal** polynomials of **degree i**

$$\omega(\tau) = 1$$

Legendre Polynomials

$$(L_i) \in \mathbb{P} \subset L_1^2([-1,1])$$

 $L_0(\tau) = 1, L_1(\tau) = \tau, (n+1)L_{n+1}(\tau) = (2n+1)\tau L_n(t) - nL_{n-1}(\tau) \quad n \ge 2$

Conclusion

DISCRETE COEFFICIENTS

