

# PROJET VTOL





Soutenance de Projet 13 Juin 2019

## Plan



- I- Présentation du projet
- II- Choix du moteur
- III- Dimensionnement semi analytique et résultats
- IV- Modèle Numérique
- V- Maquette Numérique

### I- Présentation du projet

# LE MINIBEE



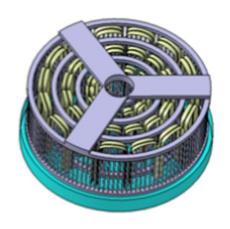


HEMS (HELICOPTER EMERGENCY MEDICAL SERVICES)



TRANSPORT DE PASSAGER




UN VÉHICULE INNOVANT

## La demande du client





- → IMPRIMABLE EN 3D ALU
- → RESPECTANT IF CAHIER DESCHARGES





## La demande du client

LE CAHIER DES CHARGES

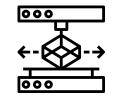


| Critère                                                                       | Exigence                       | Tolérance                                                                                                                                                                |  |  |
|-------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Puissance<br>fournie                                                          | 10 kW                          | Les moteurs peuvent être empilés<br>pour produire une puissance plus<br>élevée.                                                                                          |  |  |
| Poids                                                                         | < 12kg                         | Le plus léger possible.                                                                                                                                                  |  |  |
| Dimensions                                                                    | Hauteur : 6cm Largeur : < 40cm | La hauteur est contrainte par le<br>design du MiniBee. La largeur<br>est contrainte par les capacités<br>d'impression 3D.                                                |  |  |
| Vitesse de ro-<br>tation                                                      | 2300 tours/min                 | Imposée par les pales (pas<br>riable; diamètre 1,4m)                                                                                                                     |  |  |
| Courant d'en-<br>trée                                                         | 960 Hz triphasé<br>400V 32A    | Imposé par l'installation généra-<br>trice. Ici dans le cas d'un mo-<br>teur thermique Rotax 914 à 5800<br>tr/min couplé à un Emrax 228 en<br>configuration génératrice. |  |  |
| Assemblage<br>du moteur  Le moteur doit être<br>imprimable en 3D<br>aluminium |                                | Plusieurs étapes de fabrication<br>peuvent être tolérées (ajout orésine isolante sur la structu<br>imprimée en 3D aluminium?)                                            |  |  |

# Objectif

**Évaluer la pertinence** des technologies existantes et justifier le développement d'un nouveau moteur (**état de l'art**)






Modéliser et dimensionner le moteur





S'assurer de la **faisabilité** et de la **compétitivité** (coût - imprimable en 3D Alu)



Impression d'une première **maquette** idée en plastique

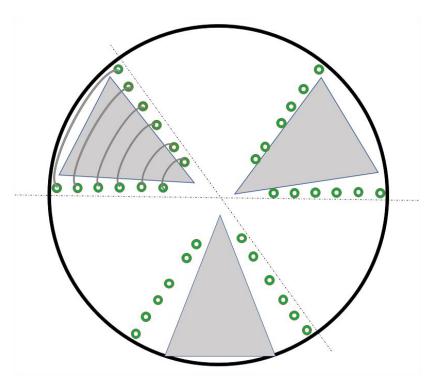


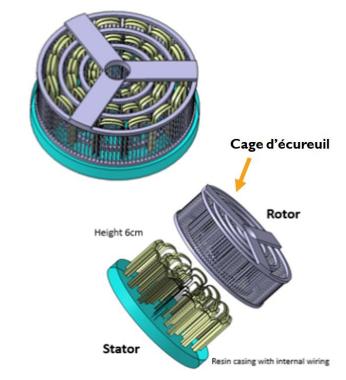
|                                                        | S1 | S2 | S3 | <b>S4</b> | S5   | S6 | <b>S7</b> | S8    | S9   | S10 | S11 | S12 | <b>S13</b> | S14 | S15 | S16  |     |
|--------------------------------------------------------|----|----|----|-----------|------|----|-----------|-------|------|-----|-----|-----|------------|-----|-----|------|-----|
| Prise en main du projet (lecture du précédent rapport) |    |    |    |           |      |    |           |       |      |     |     |     |            |     |     |      |     |
| Recherche bibliographique :                            |    |    |    |           |      |    |           |       |      |     |     |     |            |     |     |      |     |
| Moteur asynchrone/ Vs moteur synchrone                 |    |    |    |           |      |    |           |       |      |     |     |     |            |     |     |      |     |
| Moteurs à courant triphasés                            |    |    |    |           |      |    |           |       |      |     |     |     |            |     |     |      |     |
| Benchmark = comparaison à d'autres moteurs             |    |    |    |           |      |    |           |       |      | i   |     |     |            |     |     |      |     |
| Impression 3D Alu                                      |    |    |    |           |      |    |           |       |      |     |     |     |            |     |     |      |     |
| Calculs et dimensionnement                             |    |    |    |           |      |    |           |       |      |     |     |     |            |     |     |      |     |
| Premiers calcul de couple                              |    |    |    |           |      |    |           |       |      |     |     |     |            |     |     |      |     |
| Paramétrage global ( nombre de cages)                  |    |    |    |           |      |    |           |       |      |     |     |     |            |     |     |      |     |
| Optimisation                                           |    |    |    |           | t    |    |           |       |      |     |     |     |            |     |     |      |     |
| Modélisation 3D                                        |    |    |    |           | į    |    |           |       |      | į   |     |     |            |     |     |      |     |
| Contact d'un ingénieur formé au logiciel dédié         |    |    |    |           |      | 53 |           | 4 (1) |      |     |     |     |            |     |     |      |     |
| Prise en main du logiciel                              |    |    |    |           |      |    |           |       |      | i   |     |     |            |     |     |      |     |
| Première modélisation du moteur sur du courant EDF     |    |    |    |           |      |    |           |       |      |     |     |     |            |     |     |      |     |
| Modélisation courant triphasé MiniBee                  |    |    |    |           |      |    |           |       |      |     |     |     |            |     |     |      |     |
| Modèle CAO                                             |    |    |    |           | į    |    |           |       |      |     |     |     |            |     |     |      |     |
| Optimisation ( construction et matériaux)              |    |    |    |           |      |    |           |       |      |     |     |     |            |     |     |      |     |
| Impression 3D                                          |    |    |    |           |      |    |           |       |      | İ   |     |     |            |     |     |      |     |
| impression en plastique                                |    |    |    |           |      |    |           |       |      | 1   |     |     |            |     |     |      |     |
| Impression en 3D Alu                                   |    |    |    |           |      |    |           |       |      |     |     |     |            |     |     |      |     |
| Test et confrontation au modèle                        |    |    |    |           |      |    |           |       |      | İ   |     |     |            |     |     |      |     |
|                                                        |    |    |    | 28-       | mars |    |           | 09    | -avr |     |     | 09- | mai        |     |     | 13-j | uin |
| Terminé                                                |    |    |    |           |      |    |           |       |      |     |     |     |            |     |     |      |     |
| En cours OU diffucultés                                |    |    |    |           |      |    |           |       |      |     |     |     |            |     |     |      |     |
| Non réalisée                                           |    |    |    |           |      |    |           |       |      |     |     |     |            |     |     |      |     |

#### II- Choix du moteur

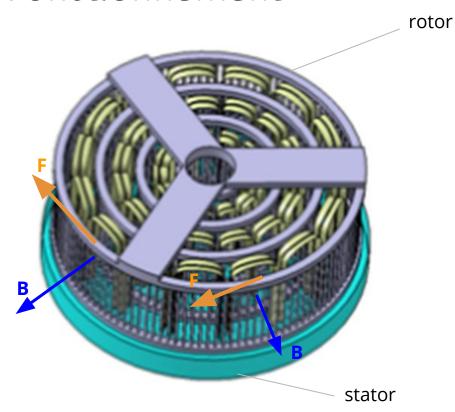
# Quel type de moteur ?

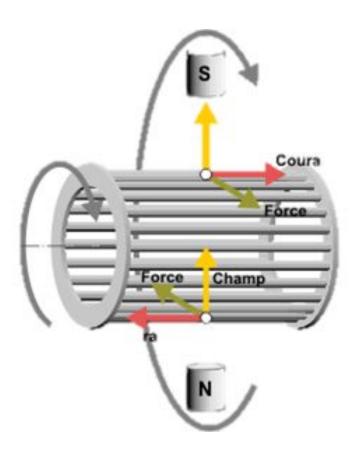
#### **Asynchrones triphasés**


| Puissance<br>(kW)   | 10   |
|---------------------|------|
| Fréquence<br>(Hz)   | 50   |
| Vitesse<br>(tr/min) | 3000 |
| Poids (Kg)          | 40   |
| Prix                | 710€ |


#### Synchrones triphasés

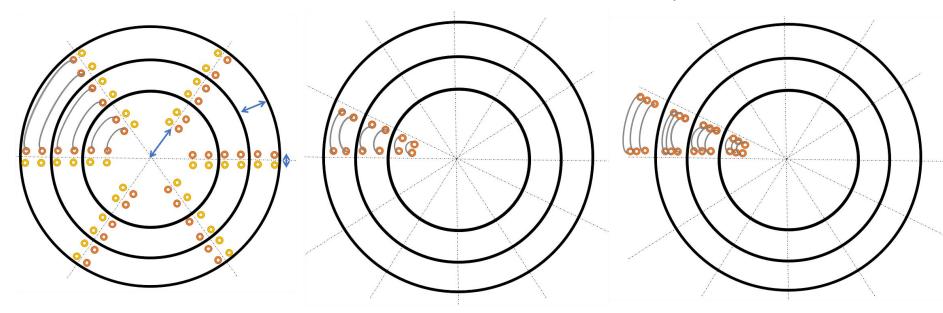
|                | Emrax 188 | REX 30          | REX 50          |
|----------------|-----------|-----------------|-----------------|
| Puissance      | 15-30 kW  | 8-20 kW         | 15-28 kW        |
| RPM max        | 7000      | 2700            | 4500-2800       |
| Poids (Kg)     | 7         | 5,2             | 7,9             |
| Couple         | 50 nm     | Non<br>spécifié | Non<br>spécifié |
| Tension<br>(V) | 400/230   | 63              | 120             |
| Prix           | >3000€    | Sur devis       | Sur devis       |


# Concept


- Coeur ferromagnétique trop lourd
  - On remplace ces derniers et leurs bobinages par des cages et des spires.



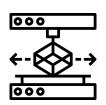



## Fonctionnement





## Démarche Itérative

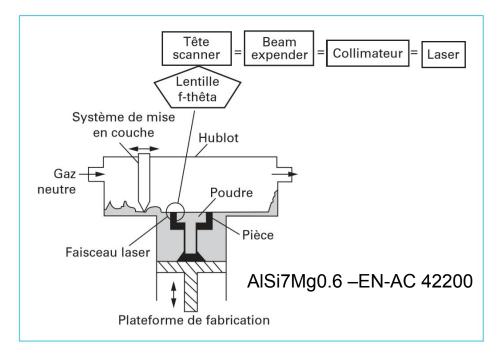

Trop peu de spires pour le couple voulu. (proportionnel au carré du nombre de spires)



Trop peu de pôles pour atteindre la vitesse de rotation voulue.

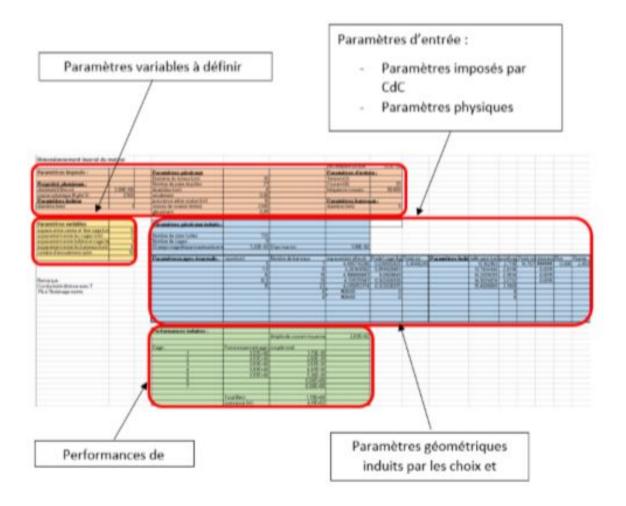
$$: N = \frac{F}{n_p}.$$

## Impression 3D Alu




Pourquoi l'aluminium?

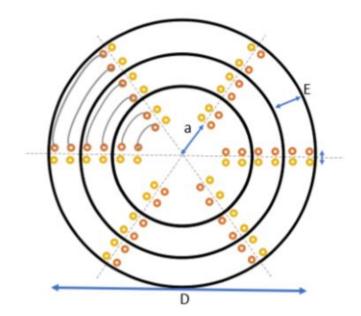
- → Poids
- → Rigidité

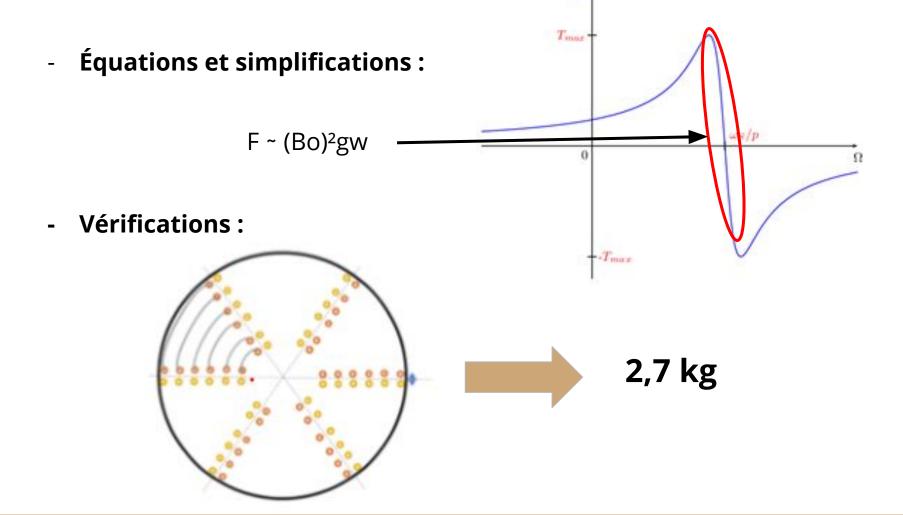

Pourquoi l'impression 3D?

- → Forme innovante
- → Série limitée



#### III- Le dimensionnement


# Dimensionnement analytique:




## Méthode:

- **Hypothèses** (géométriques, électromagnétiques)
- Paramétrage

| Paramètres<br>d'entrée |                                      | Paramètres<br>variables |                                    |
|------------------------|--------------------------------------|-------------------------|------------------------------------|
| D                      | Diamètre du moteur (cm)              | E                       | Ecart entre 2 cages (cm)           |
| L                      | Epaisseur du moteur (cm)             | esp                     | Espace entre spire et cage<br>(mm) |
| $E_p$                  | Epaisseur des barreaux (mm)          | a                       | Distance centre-1e spire<br>(cm)   |
| σ                      | Résistance linéique<br>(Ohm.m)       | e                       | Espace entre les barreaux<br>(cm)  |
| I                      | Courant d'entrée (A)                 | $N_r$                   | Nombre d'enroulement en<br>spires  |
| ρ                      | Masse volumique aluminium (kg/ $m^3$ | ер                      | Epaisseur des spires (mm)          |
| g                      | Glissement                           |                         |                                    |
| ω                      | Fréquence du courant<br>(rad/s)      | р                       | Nombre de pôles                    |





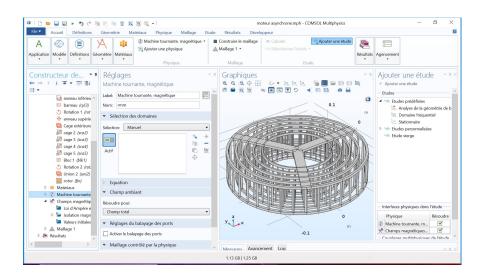
## **Résultats:**

- Influence des paramètres :

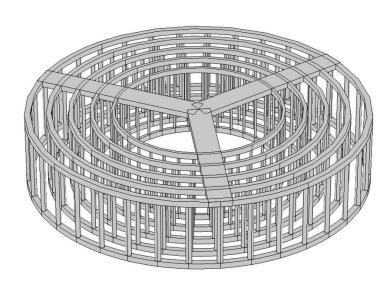




#### - Performances obtenues:




|                | Notre<br>moteur | Moteur de référence | <u>Objectif</u> |
|----------------|-----------------|---------------------|-----------------|
| Poids<br>(Kg)  | 11,87           | 40                  | < 10 kg         |
| Puissan<br>ce  | 200W            | 10 kW               | 10 kW           |
| <u>Prix(€)</u> | 1               | 700€                | <3000€          |


#### IV] Modèle numérique

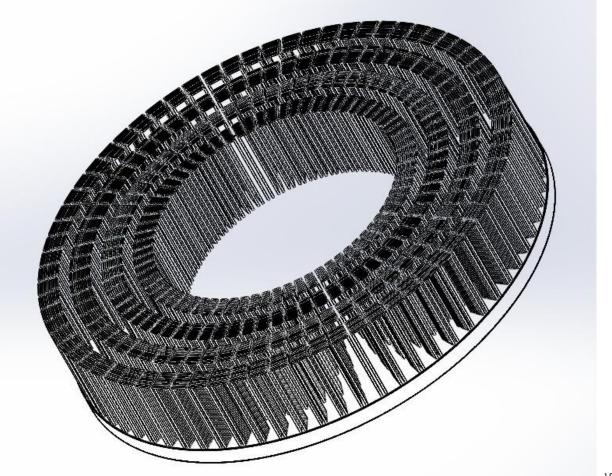
# Modèle numérique

- → Choix du logiciel COMSOL Multiphysics
- → Résolution par éléments finis








#### V] Maquette Numérique

## Modèle CAO

 108 spires par triplet de pôles

2592 spires au total

 Support pour Impression 3D



# Des questions?